6.10 Изменение главного вектора-момента при перемене центра приведения
Предположим, что в результате приведения произвольной пространственной системы сил , , ..., к какому-нибудь центру О мы получили силу, равную главному вектору приложенному в центре приведения О, и пару, вектор-момент которой равен главному вектору-моменту относительно этого центра приведения (рисунок 104). При переносе центра приведения О в новый центр приведения О* главный вектор, очевидно, сохраняет свой модуль и направление. Главный же вектор-момент изменится, так как при перенесении каждой силы параллельно самой себе из центра О в новый центр О* будет прибавляться пара. Найдем это изменение. Пусть сила данной системы приложена в точке . Пусть, как показано на рисунке 104,–радиус-вектор точкиприложения силы относительно центра О, – радиус-вектор точкиотносительно нового центраО*,– радиус-вектор данного центраО относительно нового О*. При этом .
По определению вектора-момента силы относительно точки имеем
,или
, (1)где .
Пользуясь этим результатом, можно найти связь между главным вектором-моментом данной системы сил относительно нового центра О* (обозначим его ) и главным вектором-моментом той же системы сил относительно прежнего центра О. Тогда согласно равенству (1) имеем
.
Но , поэтому окончательно получаем
,или
, (2)где –вектор-момент главного вектора , приложенного в прежнем центре приведения О относительно нового центра приведения О*.
Равенство (2) можно переписать в виде
,т. е. при изменении центра приведения главный вектор-момент системы сил изменяется на величину, равную вектору-моменту главного вектора этой системы сил, приложенного в прежнем центре приведения, относительно нового центра приведения.
- Раздел I. Статика
- Глава 1. Основные понятия и аксиомы статики
- Введение: предмет, метод, место среди естественных наук и границы применимости теоретической механики
- 1.2 Сила, система сил, эквивалентная система сил и уравновешенная система сил
- 1.3 Аксиомы статики и некоторые следствия из них
- 1.4 Исследование связей и установление направления их реакций
- Глава 2. Приведение пространственной и плоской систем сходящихся сил к равнодействующей
- 2.1 Геометрический метод определения равнодействующей
- Пространственной и плоской систем сходящихся сил
- 2.2 Условие равновесия пространственной и плоской систем сходящихся сил в геометрической форме
- 2.3 Разложение силы на сходящиеся составляющие
- 2.4 Проекции силы на ось и на плоскость
- 2.5 Определение силы по ее проекциям на координатные оси
- 2.6 Аналитический метод определения равнодействующей пространственной и плоской систем сходящихся сил
- 2.7 Условия равновесия пространственной и плоской систем сходящихся сил в аналитической форме. Указания к решению задач
- 2.8. Момент силы относительно точки. Теорема Вариньона о моменте равнодействующей
- Глава 3. Система параллельных сил и теория пар, как угодно расположенных в одной плоскости
- 3.1 Приведение систем двух параллельных сил, направленных
- В одну сторону, к равнодействующей
- 3.2 Приведение системы двух неравных по модулю параллельных сил, направленных в противоположные стороны, к равнодействующей
- 3.3 Пара сил. Момент пары сил
- 3.4 Эквивалентность пар
- 3.5 Сложение пар, расположенных в одной плоскости. Условие равновесия пар
- Глава 4. Произвольная плоская система сил
- 4.1 Теорема о параллельном переносе силы. (Метод Пуансо)
- 4.2. Приведение произвольной плоской системы сил к одной силе и к одной паре
- 4.3 Приведение произвольной плоской системы сил к равнодействующей
- 4.4 Теорема Вариньона о моменте равнодействующей произвольной плоской системы сил. Условие равновесия рычага
- 4.5 Приведение произвольной плоской системы сил к одной паре
- 4.6 Условия равновесия произвольной плоской системы сил
- 4.7 Условия равновесия плоской системы параллельных сил
- 4.8 Указания к решению задач
- 4.9 Равновесие сочлененной системы тел
- Глава 5. Трение скольжения и качения
- 5.1 Трение скольжения
- 5.2 Трение качения
- 5.3 Понятие о ферме
- 5.4 Способ вырезания узлов
- 5.5. Способ разрезов фермы
- Глава 6. Произвольная пространственная система сил и теория пар, как угодно расположенных в пространстве
- 6.1 Момент силы относительно точки как вектор
- 6.2 Момент силы относительно оси
- 6.3. Зависимость между моментом силы относительно оси и моментом силы относительно точки, лежащей на этой оси
- 6.4 Аналитическое выражение моментов силы относительно координатных осей
- 6.5 Теорема о переносе пары в другую плоскость, параллельную плоскости действия этой пары
- 6.6 Момент пары как вектор
- 6.7 Условие эквивалентности двух пар
- 6.8 Сложение пар, лежащих в разных плоскостях. Условие равновесия пар
- 6.9 Приведение произвольной пространственной системы сил к одной силе и к одной паре
- 6.10 Изменение главного вектора-момента при перемене центра приведения
- 6.11 Инварианты произвольной пространственной системы сил
- 6.12 Приведение произвольной пространственной системы сил к динамическому винту
- 6.13 Случай приведения системы сил, не лежащих в одной плоскости, к равнодействующей. Теорема Вариньона о моменте равнодействующей
- 6.14 Случай приведения системы сил, не лежащих в одной плоскости, к паре
- 6.15 Условия равновесия произвольной пространственной системы сил. Случай пространственной системы параллельных сил
- 6.16 Равновесие твердого тела с одной и с двумя закрепленными точками. Указания к решению задач
- Глава 7. Центр тяжести
- 7.1 Приведение системы параллельных сил к равнодействующей. Центр параллельных сил
- 7.2 Центр тяжести
- 7.3 Способы определения координат центров тяжести тел
- 7.4 Центр тяжести некоторых линий, площадей и объемов
- 7.5 Графическое определение положения центра тяжести плоских фигур