6. Теорема умножения вероятностей
Событие А называется независимым от события В, если вероятность события А не зависит от того, произошло событие В или нет. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло ли событие В или нет.
Примеры зависимых и независимых событий
А – «появление герба при первом подбрасывании монеты»; В – «появление герба при втором подбрасывании монеты». А и В – независимые события.
В урне два белых шара и один черный. Два лица вынимают по одному шару; рассматриваются события: А – «появление белого шара у первого лица»; В – «появление белого шара у второго лица». Вероятность события А равна 2/3, после того, как событие А произошло, вероятность события В равна ½. Событие А зависит от события В.
Вероятность события А, вычисленная при условии, что имело место событие В, называется условной вероятностью события А и обозначается: РВ(А).
Очевидно, что условие независимости событий А и В имеет вид: Р(А)=РВ(А).
Теорема умножения вероятности формулируется следующим образом.
Вероятность одновременного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место, т.е. Р(АВ)=Р(А)РА(В).
Докажем теорему. Рассмотрим события А и В и противоположные им и . В испытаниях, влекущих за собой появление или непоявление события АВ, возможны следующие комбинации: произойдет либо АВ, либо А , либо В, либо . Пусть при n испытаниях событию АВ благоприятствует k случаев, А - m случаев, В - l случаев, - p случаев:
-
А
В
k
l
k+l
m
p
m+p
k+m
l+p
Имеем: Р(АВ)= , Р(А)= , РА(В)= . Выполняется тождество: Р(АВ)=Р(А)РА(В).
Следствие из теоремы умножения вероятностей: , следовательно , т.е. отношение безусловных вероятностей равно отношению условных вероятностей.
Теорема умножения вероятностей независимых событий формулируется следующим образом:
Вероятность одновременного появления двух независимых событий равна произведению вероятностей этих событий, т.е. Р(АВ)=Р(А)Р(В).
Задачи.
В урне 2 белых и 3 черных шара. Из урны вынимают подряд два шара. Найти вероятность того, что оба шара белые.
Та же задача при условии, что после первого вынимания шар возвращается в урну, и шары в урне перемешиваются.
Решение.
А – появление двух белых шаров, В – появление первого белого шара, С – появление второго белого шара. Р(С)=Р(А)РА(В)=(2/5)(1/4)=0,1.
Р(С)=Р(А)Р(В)=(2/5)(2/5)=0,16 Р(С)=Р(А)РА(В)=(2/5)(1/4)=0,1.
- Бийский технологический институт (филиал)
- Теория вероятностей и математическая статистика
- Введение
- События. Классификация событий. Классическое определение вероятности
- Статистическое определение вероятности
- Геометрическая вероятность
- Контрольные вопросы
- Контрольные задания
- 4. Операции над событиями. Соотношения между событиями
- 5.Теорема сложения вероятностей
- 6. Теорема умножения вероятностей
- Контрольные вопросы
- Контрольные задания
- 7. Формула полной вероятности
- 8. Теорема гипотез (формула Бейеса)
- Контрольные вопросы
- Контрольные задания
- Литература
- 9. Повторение опытов. Формула Бернулли
- 10. Локальная формула Муавра-Лапласа. Формула Пуассона
- 11. Интегральная формула Муавра-Лапласа. Вероятность отклонения частоты события от его вероятности в n независимых испытаниях
- Контрольные вопросы
- Контрольные задания
- Литература
- 12. Понятие случайной величины. Ряд распределения. Многоугольник распределения
- 13. Функция распределения. Вероятность попадания непрерывной случайной величины в заданный интервал
- Контрольные вопросы
- Контрольные задания
- 14. Плотность распределения
- Контрольные вопросы
- Контрольные задания
- 15. Числовые характеристики случайных величин. Математическое ожидание и его свойства
- Свойства математического ожидания
- 16. Дисперсия и ее свойства. Среднее квадратическое отклонение
- 17. Моменты распределения случайной величины
- Контрольные вопросы
- Контрольные задания
- 18. Типы распределений дискретных случайных величин
- Биномиальное распределение
- 18.2 Гипергеометрическое распределение
- 18.3 Геометрическое распределение
- 4. Распределение Пуассона
- Контрольные вопросы
- Контрольные задания
- 19. Типы распределений непрерывных случайных величин
- 19.1 Равномерное распределение
- 19.2 Показательное распределение
- 20. Нормальный закон распределения
- 21. Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило трёх сигма
- Контрольные вопросы
- Контрольные задания
- Литература
- 22. Понятие системы случайных величин
- 23. Закон распределения вероятностей дискретной двумерной случайной величины
- Контрольные вопросы
- 24. Функция распределения двух случайных величин. Вероятность попадания случайной величины в полуполосу и прямоугольник
- 25. Плотность распределения системы двух случайных величин. Законы распределения отдельных величин, входящих в систему
- 26. Условные законы распределения
- Контрольные вопросы
- 27. Зависимые и независимые случайные величины
- 28. Числовые характеристики составляющих системы двух случайных величин. Условное математическое ожидание
- 29. Корреляционный момент. Коэффициент корреляции
- 30. Коррелированность и зависимость случайных величин
- Если величины независимы, то они некоррелированы.
- 31. Линейная регрессия. Прямые линии среднеквадратической регрессии
- Контрольные вопросы
- Контрольные задания
- Литература
- 32. Закон больших чисел
- 33. Центральная предельная теорема
- Контрольные вопросы
- Контрольные задания
- Литература
- Математическая статистика
- 34. Понятие о выборочном методе. Генеральная и выборочная совокупность
- 35. Статистические данные и их представление
- 36. Статистические аналоги теоретических законов распределения
- 36.1 Эмпирическая функция распределения
- 36.2 Полигон и гистограмма
- Контрольные вопросы
- Контрольные задания
- Литература
- 37. Точечное оценивание параметров распределения
- 38. Свойства статистических оценок
- Контрольные вопросы
- Контрольные задания
- 39. Интервальное оценивание параметров распределения
- 40. Интервальное оценивание параметров нормального распределения
- 40.1 Интервальная оценка математического ожидания нормального распределения при известной дисперсии
- 40.2 Интервальная оценка математического ожидания нормального распределения при неизвестной дисперсии
- Контрольные вопросы
- Контрольные задания
- Литература
- 41. Статистические гипотезы
- 42. Критерии проверки гипотез
- Контрольные вопросы
- Контрольные задания
- 43.Критерий согласия Пирсона «Хи-квадрат» ( )
- Контрольные вопросы
- Контрольные задания
- Литература
- 44. Элементы теории корреляции. Задачи корреляционного анализа
- 45. Выбор формы зависимости между переменными. Метод наименьших квадратов
- Контрольные вопросы
- 46. Коэффициент корреляции и проверка его значимости. Линейная регрессия и прогноз
- Контрольные вопросы
- Контрольные задания
- Литература
- Глоссарий