31. Линейная регрессия. Прямые линии среднеквадратической регрессии
Рассмотрим систему двух зависимых случайных величин Х и Y. Положим, что , где , где а и b – параметры, подлежащие определению.
Назовем функцию наилучшим приближением к Y в смысле метода наименьших квадратов, если принимает наименьшее возможное значение, при этом - среднеквадратическая регрессия Y на Х.
Справедливо следующее утверждение.
Линейная регрессия Y на Х имеет вид , где mx, my – математические ожидания, σx, σy - средние квадратические отклонения составляющих Х и Y соответственно, rxy – коэффициент корреляции.
Прямая называется прямой среднеквадратической регрессии Y на Х. Угловой коэффициент а функции , равный , называется коэффициентом регрессии Y на Х.
Решив задачу оптимизации величины , можно заключить, что наименьшее ее значение, равное называется остаточной дисперсией случайной величины Y относительно случайной величины Х. Остаточная дисперсия характеризует величину ошибки, которую допускают при замене Y линейной функцией . При остаточная дисперсия равна нулю, т.е. при крайних значениях коэффициента корреляции не возникает ошибки при представлении Y в виде линейной функции от Х, т.е. другими словами при Y является линейной функцией от Х. При этом, если r = 1, то между Y и Х возрастающая зависимость, а при r = -1 эта зависимость является убывающей.
При r = 0 , т.е. Y от Х не зависит.
Аналогично, прямая среднеквадратической регрессии Х на У имеет вид и остаточную дисперсию величины Х относительно величины Y.
Проанализировав уравнения линий среднеквадратической регрессии Y на Х и Х на Y, отметим, что обе прямые проходят через одну и ту же точку (mx, my), которая называется центром совместного распределения Х и Y.
При прямые регрессии совпадают. В самом деле, при r = 1 имеем два равносильных уравнения:
;
.
При r = -1 имеем также два равносильных уравнения:
;
.
- Бийский технологический институт (филиал)
- Теория вероятностей и математическая статистика
- Введение
- События. Классификация событий. Классическое определение вероятности
- Статистическое определение вероятности
- Геометрическая вероятность
- Контрольные вопросы
- Контрольные задания
- 4. Операции над событиями. Соотношения между событиями
- 5.Теорема сложения вероятностей
- 6. Теорема умножения вероятностей
- Контрольные вопросы
- Контрольные задания
- 7. Формула полной вероятности
- 8. Теорема гипотез (формула Бейеса)
- Контрольные вопросы
- Контрольные задания
- Литература
- 9. Повторение опытов. Формула Бернулли
- 10. Локальная формула Муавра-Лапласа. Формула Пуассона
- 11. Интегральная формула Муавра-Лапласа. Вероятность отклонения частоты события от его вероятности в n независимых испытаниях
- Контрольные вопросы
- Контрольные задания
- Литература
- 12. Понятие случайной величины. Ряд распределения. Многоугольник распределения
- 13. Функция распределения. Вероятность попадания непрерывной случайной величины в заданный интервал
- Контрольные вопросы
- Контрольные задания
- 14. Плотность распределения
- Контрольные вопросы
- Контрольные задания
- 15. Числовые характеристики случайных величин. Математическое ожидание и его свойства
- Свойства математического ожидания
- 16. Дисперсия и ее свойства. Среднее квадратическое отклонение
- 17. Моменты распределения случайной величины
- Контрольные вопросы
- Контрольные задания
- 18. Типы распределений дискретных случайных величин
- Биномиальное распределение
- 18.2 Гипергеометрическое распределение
- 18.3 Геометрическое распределение
- 4. Распределение Пуассона
- Контрольные вопросы
- Контрольные задания
- 19. Типы распределений непрерывных случайных величин
- 19.1 Равномерное распределение
- 19.2 Показательное распределение
- 20. Нормальный закон распределения
- 21. Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило трёх сигма
- Контрольные вопросы
- Контрольные задания
- Литература
- 22. Понятие системы случайных величин
- 23. Закон распределения вероятностей дискретной двумерной случайной величины
- Контрольные вопросы
- 24. Функция распределения двух случайных величин. Вероятность попадания случайной величины в полуполосу и прямоугольник
- 25. Плотность распределения системы двух случайных величин. Законы распределения отдельных величин, входящих в систему
- 26. Условные законы распределения
- Контрольные вопросы
- 27. Зависимые и независимые случайные величины
- 28. Числовые характеристики составляющих системы двух случайных величин. Условное математическое ожидание
- 29. Корреляционный момент. Коэффициент корреляции
- 30. Коррелированность и зависимость случайных величин
- Если величины независимы, то они некоррелированы.
- 31. Линейная регрессия. Прямые линии среднеквадратической регрессии
- Контрольные вопросы
- Контрольные задания
- Литература
- 32. Закон больших чисел
- 33. Центральная предельная теорема
- Контрольные вопросы
- Контрольные задания
- Литература
- Математическая статистика
- 34. Понятие о выборочном методе. Генеральная и выборочная совокупность
- 35. Статистические данные и их представление
- 36. Статистические аналоги теоретических законов распределения
- 36.1 Эмпирическая функция распределения
- 36.2 Полигон и гистограмма
- Контрольные вопросы
- Контрольные задания
- Литература
- 37. Точечное оценивание параметров распределения
- 38. Свойства статистических оценок
- Контрольные вопросы
- Контрольные задания
- 39. Интервальное оценивание параметров распределения
- 40. Интервальное оценивание параметров нормального распределения
- 40.1 Интервальная оценка математического ожидания нормального распределения при известной дисперсии
- 40.2 Интервальная оценка математического ожидания нормального распределения при неизвестной дисперсии
- Контрольные вопросы
- Контрольные задания
- Литература
- 41. Статистические гипотезы
- 42. Критерии проверки гипотез
- Контрольные вопросы
- Контрольные задания
- 43.Критерий согласия Пирсона «Хи-квадрат» ( )
- Контрольные вопросы
- Контрольные задания
- Литература
- 44. Элементы теории корреляции. Задачи корреляционного анализа
- 45. Выбор формы зависимости между переменными. Метод наименьших квадратов
- Контрольные вопросы
- 46. Коэффициент корреляции и проверка его значимости. Линейная регрессия и прогноз
- Контрольные вопросы
- Контрольные задания
- Литература
- Глоссарий