logo
Konspekt_lektsy

Контрольные задания

  1. Случайная величина Х распределена равномерно на отрезке [−3, 5]. Найти плотность распределения и функцию распределения Х. Построить графики обеих функций. Найти вероятности и . Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение Х.

  2. Автобусы маршрута №21 идут регулярно с интервалом 10 мин. Пассажир выходит на остановку в случайный момент времени. Рассматривается случайная величина Х − время ожидания пассажиром автобуса (в мин.). Найти плотность распределения и функцию распределения Х. Построить графики обеих функций. Найти вероятность того, что пассажиру придется ждать автобуса не более пяти минут. Найти среднее время ожидания автобуса и дисперсию времени ожидания автобуса.

  3. Установлено, что время ремонта видеомагнитофона (в днях) есть случайная величина Х, распределенная по показательному закону. Среднее значение времени ремонта видеомагнитофона равно 10 дням. Найти плотность распределения и функцию распределения Х. Построить графики обеих функций. Найти вероятность того, что на ремонт видеомагнитофона потребуется не менее 11 дней.

  4. Изобразите графики плотности и функции распределения случайной величины Х, распределенной по нормальному закону с параметрами m = = − 2 и = 0,2.

  5. Найти М(1−Х) и D(1−Х) случайной величины Х, плотность распределения которой .

  6. Случайная величина Х распределена нормально, причем m = 10 и = = 2. Найти .

  7. Автомат изготавливает подшипники, которые годными, если отклонение Х от проектного размера по модулю не превышает 0,77 мм. Каково наиболее вероятное число годных подшипников из 100, если случайная величина Х распределена нормально с параметром = 0,4 мм?