41. Статистические гипотезы
На разных стадиях экономико-статистического исследования часто возникает необходимость формулировки, а затем экспериментальной проверки некоторых предположений или гипотез. Например, при контроле качества продукции во многих ситуациях предполагается, что измеряемые величины нормально распределены вокруг их номинального значения или что применение нового прибора, устройства и т.д. существенно повышает производительность труда. Задача состоит в том, чтобы проверить, не противоречит ли высказанное предположение имеющимся результатам наблюдений.
Понятие «статистическая гипотеза» означает любое предположение о виде или свойствах распределения генеральной совокупности, из которой извлечена выборка. Такие предположения можно делать на основании теоретических соображений или других статистических исследований. Пусть, например, многократно измеряется некоторая физическая величина, точное значение а которой не известно и в процессе измерений не меняется. На результаты измерений влияют многие случайные факторы: точность настройки измерительного прибора, погрешность округления при считывании данных и т.п. Поэтому результат i-го измерения можно записать в виде , где - случайная погрешность измерения. Обычно считают, что общая ошибка складывается из большого числа ошибок, каждая из которых невелика и независима от одна от другой. На основании центральной предельной теоремы можно предположить, что случайные величины имеют нормальное распределение. Такое предположение является статистической гипотезой о виде распределения результатов измерения.
Статистическая гипотеза, являющаяся утверждением о параметрах генеральной совокупности называется параметрической. Гипотеза, содержащая утверждение обо всем распределении изучаемого признака называется непараметрической. Различают также простую и сложную гипотезы. Гипотеза называется простой, если она однозначно определяет распределение исследуемого признака; в противном случае гипотеза называется сложной. Например, простой параметрической гипотезой является утверждение о том, что изучаемый признак Х имеет стандартное нормальное распределение. Если же высказывается предположение, что наблюдаемый признак Х имеет нормальное распределение, не указывая при этом конкретное значение среднего и дисперсии или указывая значение только одного параметра, то это сложная гипотеза.
Процедура обоснования сопоставления высказанной статистической гипотезы с имеющимися в нашем распоряжении выборочными данными называется проверкой статистической гипотезы. Результат подобного сопоставления может быть либо отрицательным, либо неотрицательным. В первом случае данные наблюдения противоречат высказанной гипотезе, а потому от этой гипотезы следует отказаться, во втором – данные наблюдений не противоречат высказанной гипотезе, следовательно, ее можно принять в качестве одного из допустимых предположений. При этом неотрицательный результат проверки гипотезы не означает, что высказанное нами предположение является единственно верным, – просто оно не противоречит имеющимся выборочным данным. Однако таким же свойством наряду с проверяемой гипотезой могут обладать и другие гипотезы. Так что даже статистически проверенное предположение следует расценивать не как раз и навсегда установленный факт, а как достаточно правдоподобное, не противоречащее имеющимся данным утверждение.
Проверяемая гипотеза называется основной или нулевой и обозначается . Гипотеза, которая противопоставляется нулевой, называется альтернативной или конкурирующей и обозначается . В качестве конкурирующей часто выступает гипотеза, противоположная основной. Кроме того, альтернативных гипотез может быть несколько или бесконечно много.
Например, рассмотрим нулевую гипотезу : параметр принимает значение, равное , т.е. . В качестве альтернативной можно рассмотреть одну из следующих гипотез: а) : ; б) : ; в) : .
Проверка статистических гипотез на основании выборочных данных неизбежно связана с риском принятия ложного решения. При этом возможны два ошибочных решения:
отклонение верной нулевой гипотезы – ошибка 1-го рода; вероятность ошибки 1-го рода принято обозначать , т.е. ; называют уровнем значимости;
принятие неверной нулевой гипотезы – ошибка 2-го рода; вероятность ошибки 2-го рода принято обозначать , т.е. .
Возможные результаты статистической проверки представлены ниже в таблице:
Результаты проверки гипотезы | Возможные состояния гипотезы | |
Гипотеза Н0 верна | Гипотеза Н0 неверна | |
Гипотеза Н0 отвергается | Ошибка 1-го рода | Правильный вывод |
Гипотеза Н0 принимается | Правильный вывод | Ошибка 2-го рода |
Последствия указанных ошибок часто оказываются различными. Например, если основная гипотеза состоит в признании продукции предприятия качественной и допущена ошибка 1-го рода, то будет забракована годная продукция. Допустив ошибку 2-го рода, производитель отправляет потребителю брак. В данном случае последствия второй ошибки более серьезны с точки зрения имиджа фирмы и ее долгосрочных перспектив. Если основная гипотеза состоит в наличии некоторого заболевания у пациента, то ошибка 2-го рода приведет к неправильному заключению о необходимости лечения. В результате ошибки 1-го рода имеющееся заболевание не будет обнаружено, что может привести к летальному исходу.
Исключить ошибки первого и второго рода во многих случаях невозможно в силу ограниченности выборки. Поэтому стремятся минимизировать потери от этих ошибок. Одновременное уменьшение вероятностей данных ошибок при фиксированном объеме выборки невозможно, так как задачи их уменьшения являются конкурирующими, и снижение вероятности допустить одну из них влечет за собой увеличение вероятности допустить другую. В большинстве случаев единственный способ уменьшения вероятности ошибок состоит в увеличении объема выборки.
- Бийский технологический институт (филиал)
- Теория вероятностей и математическая статистика
- Введение
- События. Классификация событий. Классическое определение вероятности
- Статистическое определение вероятности
- Геометрическая вероятность
- Контрольные вопросы
- Контрольные задания
- 4. Операции над событиями. Соотношения между событиями
- 5.Теорема сложения вероятностей
- 6. Теорема умножения вероятностей
- Контрольные вопросы
- Контрольные задания
- 7. Формула полной вероятности
- 8. Теорема гипотез (формула Бейеса)
- Контрольные вопросы
- Контрольные задания
- Литература
- 9. Повторение опытов. Формула Бернулли
- 10. Локальная формула Муавра-Лапласа. Формула Пуассона
- 11. Интегральная формула Муавра-Лапласа. Вероятность отклонения частоты события от его вероятности в n независимых испытаниях
- Контрольные вопросы
- Контрольные задания
- Литература
- 12. Понятие случайной величины. Ряд распределения. Многоугольник распределения
- 13. Функция распределения. Вероятность попадания непрерывной случайной величины в заданный интервал
- Контрольные вопросы
- Контрольные задания
- 14. Плотность распределения
- Контрольные вопросы
- Контрольные задания
- 15. Числовые характеристики случайных величин. Математическое ожидание и его свойства
- Свойства математического ожидания
- 16. Дисперсия и ее свойства. Среднее квадратическое отклонение
- 17. Моменты распределения случайной величины
- Контрольные вопросы
- Контрольные задания
- 18. Типы распределений дискретных случайных величин
- Биномиальное распределение
- 18.2 Гипергеометрическое распределение
- 18.3 Геометрическое распределение
- 4. Распределение Пуассона
- Контрольные вопросы
- Контрольные задания
- 19. Типы распределений непрерывных случайных величин
- 19.1 Равномерное распределение
- 19.2 Показательное распределение
- 20. Нормальный закон распределения
- 21. Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило трёх сигма
- Контрольные вопросы
- Контрольные задания
- Литература
- 22. Понятие системы случайных величин
- 23. Закон распределения вероятностей дискретной двумерной случайной величины
- Контрольные вопросы
- 24. Функция распределения двух случайных величин. Вероятность попадания случайной величины в полуполосу и прямоугольник
- 25. Плотность распределения системы двух случайных величин. Законы распределения отдельных величин, входящих в систему
- 26. Условные законы распределения
- Контрольные вопросы
- 27. Зависимые и независимые случайные величины
- 28. Числовые характеристики составляющих системы двух случайных величин. Условное математическое ожидание
- 29. Корреляционный момент. Коэффициент корреляции
- 30. Коррелированность и зависимость случайных величин
- Если величины независимы, то они некоррелированы.
- 31. Линейная регрессия. Прямые линии среднеквадратической регрессии
- Контрольные вопросы
- Контрольные задания
- Литература
- 32. Закон больших чисел
- 33. Центральная предельная теорема
- Контрольные вопросы
- Контрольные задания
- Литература
- Математическая статистика
- 34. Понятие о выборочном методе. Генеральная и выборочная совокупность
- 35. Статистические данные и их представление
- 36. Статистические аналоги теоретических законов распределения
- 36.1 Эмпирическая функция распределения
- 36.2 Полигон и гистограмма
- Контрольные вопросы
- Контрольные задания
- Литература
- 37. Точечное оценивание параметров распределения
- 38. Свойства статистических оценок
- Контрольные вопросы
- Контрольные задания
- 39. Интервальное оценивание параметров распределения
- 40. Интервальное оценивание параметров нормального распределения
- 40.1 Интервальная оценка математического ожидания нормального распределения при известной дисперсии
- 40.2 Интервальная оценка математического ожидания нормального распределения при неизвестной дисперсии
- Контрольные вопросы
- Контрольные задания
- Литература
- 41. Статистические гипотезы
- 42. Критерии проверки гипотез
- Контрольные вопросы
- Контрольные задания
- 43.Критерий согласия Пирсона «Хи-квадрат» ( )
- Контрольные вопросы
- Контрольные задания
- Литература
- 44. Элементы теории корреляции. Задачи корреляционного анализа
- 45. Выбор формы зависимости между переменными. Метод наименьших квадратов
- Контрольные вопросы
- 46. Коэффициент корреляции и проверка его значимости. Линейная регрессия и прогноз
- Контрольные вопросы
- Контрольные задания
- Литература
- Глоссарий