37. Точечное оценивание параметров распределения
Одна из основных целей статистической обработки данных состоит в представлении множества обрабатываемых данных в виде сравнительно небольшого числа сводных характеристик, построенных на основании этих исходных данных. При этом важно, чтобы такое сжатие данных сохраняло по возможности в выбранных характеристиках всю существенную информацию, относящуюся к исследуемому объекту (явлению) и содержащуюся в исходных данных. Упомянутые сводные характеристики являются функциями от исходных результатов наблюдения и называются статистиками.
Распределение исследуемого признака Х характеризуется целым рядом числовых теоретических характеристик или параметров . Сюда относятся среднее значение (математическое ожидание), дисперсия, среднее квадратическое отклонение, моменты и т.д. Они могут быть найдены, если известен закон распределения признака Х. Однако на практике распределение изучаемого признака, как правило, неизвестно или же известно частично (с точностью до некоторых параметров). Поэтому необходимо указать некоторую функцию от исходных данных (или статистику), предназначенную для использования вместо неизвестного теоретического параметра в качестве его приближения. Это приближенное значение параметра называется точечной оценкой параметра (или просто оценкой) и обозначается .
Предположим, что рассматриваемый признак Х – результат изменения некоторой физической постоянной а, при котором систематическая погрешность отсутствует. Из практики известно, что распределение Х, как правило, нормальное с параметрами и . В этом случае вид закона распределения случайного признака Х известен, а оценка неизвестных параметров распределения по выборке заключается в определении по результатам измерений приближенных значения а и .
При изучении случайных признаков часто используются числовые характеристики, позволяющие оценивать такие его свойства, как центр группирования значений исследуемого признака, меру их рассеивания относительно центра группирования, характеристики формы распределения. Так, например, при изучении закона распределения заработной платы работников интересуются в первую очередь средней заработной платой и одной из мер его случайного рассеивания – дисперсией или средним квадратическим отклонением.
Для оценки теоретических характеристик распределения применяются различные выборочные характеристики или статистики. Предположим, что исходные данные сгруппированы и представлены таблицей частот (дискретной или интервальной).
Пусть - значение признака, и центр интервала группировки, если таблица частот интервальная;
− частота, соответствующая i-му значению или i-му интервалу, i = 1, 2, …, k;
− объем выборки; k – число различных выборочных данных или интервалов группировки.
В качестве характеристик центра группирования значений исследуемого признака в статистической практике используют несколько видов средних значений. Средние значения представляют величины, вокруг которых концентрируются наблюдения. Наиболее распространенной средней величиной является выборочная средняя , которая представляет собой среднее арифметическое результатов наблюдения:
.
Основной и наиболее употребительной характеристикой степени рассеяния значений исследуемого признака относительно центра группирования является выборочная дисперсия, которая находится по одной из следующих формул:
или .
Наряду с выборочной дисперсией в качестве характеристики степени рассеяния значений исследуемого признака часто используется выборочное среднее квадратическое отклонение
.
Задача. Вычислить выборочные среднее значение, дисперсию и среднее квадратическое отклонение тарифного разряда рабочих механического цеха по данным задачи из п.35.
Решение. Воспользовавшись формулами для средней выборочной, выборочной дисперсии и выборочного среднего квадратического отклонения, получим:
.
- Бийский технологический институт (филиал)
- Теория вероятностей и математическая статистика
- Введение
- События. Классификация событий. Классическое определение вероятности
- Статистическое определение вероятности
- Геометрическая вероятность
- Контрольные вопросы
- Контрольные задания
- 4. Операции над событиями. Соотношения между событиями
- 5.Теорема сложения вероятностей
- 6. Теорема умножения вероятностей
- Контрольные вопросы
- Контрольные задания
- 7. Формула полной вероятности
- 8. Теорема гипотез (формула Бейеса)
- Контрольные вопросы
- Контрольные задания
- Литература
- 9. Повторение опытов. Формула Бернулли
- 10. Локальная формула Муавра-Лапласа. Формула Пуассона
- 11. Интегральная формула Муавра-Лапласа. Вероятность отклонения частоты события от его вероятности в n независимых испытаниях
- Контрольные вопросы
- Контрольные задания
- Литература
- 12. Понятие случайной величины. Ряд распределения. Многоугольник распределения
- 13. Функция распределения. Вероятность попадания непрерывной случайной величины в заданный интервал
- Контрольные вопросы
- Контрольные задания
- 14. Плотность распределения
- Контрольные вопросы
- Контрольные задания
- 15. Числовые характеристики случайных величин. Математическое ожидание и его свойства
- Свойства математического ожидания
- 16. Дисперсия и ее свойства. Среднее квадратическое отклонение
- 17. Моменты распределения случайной величины
- Контрольные вопросы
- Контрольные задания
- 18. Типы распределений дискретных случайных величин
- Биномиальное распределение
- 18.2 Гипергеометрическое распределение
- 18.3 Геометрическое распределение
- 4. Распределение Пуассона
- Контрольные вопросы
- Контрольные задания
- 19. Типы распределений непрерывных случайных величин
- 19.1 Равномерное распределение
- 19.2 Показательное распределение
- 20. Нормальный закон распределения
- 21. Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило трёх сигма
- Контрольные вопросы
- Контрольные задания
- Литература
- 22. Понятие системы случайных величин
- 23. Закон распределения вероятностей дискретной двумерной случайной величины
- Контрольные вопросы
- 24. Функция распределения двух случайных величин. Вероятность попадания случайной величины в полуполосу и прямоугольник
- 25. Плотность распределения системы двух случайных величин. Законы распределения отдельных величин, входящих в систему
- 26. Условные законы распределения
- Контрольные вопросы
- 27. Зависимые и независимые случайные величины
- 28. Числовые характеристики составляющих системы двух случайных величин. Условное математическое ожидание
- 29. Корреляционный момент. Коэффициент корреляции
- 30. Коррелированность и зависимость случайных величин
- Если величины независимы, то они некоррелированы.
- 31. Линейная регрессия. Прямые линии среднеквадратической регрессии
- Контрольные вопросы
- Контрольные задания
- Литература
- 32. Закон больших чисел
- 33. Центральная предельная теорема
- Контрольные вопросы
- Контрольные задания
- Литература
- Математическая статистика
- 34. Понятие о выборочном методе. Генеральная и выборочная совокупность
- 35. Статистические данные и их представление
- 36. Статистические аналоги теоретических законов распределения
- 36.1 Эмпирическая функция распределения
- 36.2 Полигон и гистограмма
- Контрольные вопросы
- Контрольные задания
- Литература
- 37. Точечное оценивание параметров распределения
- 38. Свойства статистических оценок
- Контрольные вопросы
- Контрольные задания
- 39. Интервальное оценивание параметров распределения
- 40. Интервальное оценивание параметров нормального распределения
- 40.1 Интервальная оценка математического ожидания нормального распределения при известной дисперсии
- 40.2 Интервальная оценка математического ожидания нормального распределения при неизвестной дисперсии
- Контрольные вопросы
- Контрольные задания
- Литература
- 41. Статистические гипотезы
- 42. Критерии проверки гипотез
- Контрольные вопросы
- Контрольные задания
- 43.Критерий согласия Пирсона «Хи-квадрат» ( )
- Контрольные вопросы
- Контрольные задания
- Литература
- 44. Элементы теории корреляции. Задачи корреляционного анализа
- 45. Выбор формы зависимости между переменными. Метод наименьших квадратов
- Контрольные вопросы
- 46. Коэффициент корреляции и проверка его значимости. Линейная регрессия и прогноз
- Контрольные вопросы
- Контрольные задания
- Литература
- Глоссарий