Контрольные задания
Предположим, что 5% всех мужчин и 0,25% всех женщин страдают дальтонизмом. Наугад выбранное лицо является дальтоником. Какова вероятность, что это мужчина (считать, что мужчин и женщин одинаковое количество).
В цехе работает 20 станков. Из ни 10 марки А, 6 – марки В, 4 – марки С. Вероятность, что качество детали окажется отличным для станков А, В и С соответственно равна 0,9, 0,8 и 0,7. Какой процент отличных деталей выпускает цех в целом?
Однотипные приборы выпускаются тремя заводами в количественном соотношении1:2:3, причем вероятности брака для этих заводов соответственно равны 3%, 2%, 1%. Прибор, приобретенный НИИ, оказался бракованным. Какова вероятность того, что этот прибор изготовлен первым заводом?
Партия транзисторов, среди которых 10% дефектных, поступает на проверку. Схема проверки такова, что с вероятностью 0,95 обнаруживает дефект, если он есть, и существует нулевая вероятность того, что исправный транзистор будет признан дефектным. Случайно выбранный транзистор был признан дефектным. Какова вероятность того, что на самом деле транзистор исправен?
Имеется три урны с шарами. В первой находится 5 голубых и 3 красных шара, во второй – 4 голубых и 4 красных шара, а в третьей – 8 голубых. Наугад выбирается урна и из нее наугад выбирается шар. Найти вероятность того, что шар окажется красным.
В пяти ящиках лежат одинаковые по размерам и весу шары. В двух ящиках – по 6 голубых и 4 красных шара. В двух других ящиках – по 8 голубых и 2 красных шара. В одном ящике – 2 голубых и 8 красных шаров. Наудачу выбирается ящик и из него извлекается шар. Какова вероятность того, что извлеченный шар оказался голубым?
В мае вероятность дождливого дня равна 0,2. Для некоторой футбольной команды вероятность выиграть в ясный день равна 0,7, но зато в дождливый день эта вероятность равна лишь 0,4. Известно, что команда выиграла матч. Какова вероятность того, что в этот день шел дождь?
Из 100 студентов, пришедших на экзамен, 80 подготовились к экзамену, а 20 нет. Вероятность того, что подготовленный студент сдаст экзамен, равна 0,9. Аналогичная вероятность для неподготовленного студента равна 0,05. Наудачу выбранный студент сдал экзамен. Какова вероятность того, что он был подготовлен к экзамену?
Из партии, в которой 5 изделий, извлечено одно бракованное изделие. Считая равновозможными все предположения о первоначальном составе партии, найти вероятность того, что в партии первоначально было именно а) одно бракованное изделие; б) три бракованных изделия.
- Бийский технологический институт (филиал)
- Теория вероятностей и математическая статистика
- Введение
- События. Классификация событий. Классическое определение вероятности
- Статистическое определение вероятности
- Геометрическая вероятность
- Контрольные вопросы
- Контрольные задания
- 4. Операции над событиями. Соотношения между событиями
- 5.Теорема сложения вероятностей
- 6. Теорема умножения вероятностей
- Контрольные вопросы
- Контрольные задания
- 7. Формула полной вероятности
- 8. Теорема гипотез (формула Бейеса)
- Контрольные вопросы
- Контрольные задания
- Литература
- 9. Повторение опытов. Формула Бернулли
- 10. Локальная формула Муавра-Лапласа. Формула Пуассона
- 11. Интегральная формула Муавра-Лапласа. Вероятность отклонения частоты события от его вероятности в n независимых испытаниях
- Контрольные вопросы
- Контрольные задания
- Литература
- 12. Понятие случайной величины. Ряд распределения. Многоугольник распределения
- 13. Функция распределения. Вероятность попадания непрерывной случайной величины в заданный интервал
- Контрольные вопросы
- Контрольные задания
- 14. Плотность распределения
- Контрольные вопросы
- Контрольные задания
- 15. Числовые характеристики случайных величин. Математическое ожидание и его свойства
- Свойства математического ожидания
- 16. Дисперсия и ее свойства. Среднее квадратическое отклонение
- 17. Моменты распределения случайной величины
- Контрольные вопросы
- Контрольные задания
- 18. Типы распределений дискретных случайных величин
- Биномиальное распределение
- 18.2 Гипергеометрическое распределение
- 18.3 Геометрическое распределение
- 4. Распределение Пуассона
- Контрольные вопросы
- Контрольные задания
- 19. Типы распределений непрерывных случайных величин
- 19.1 Равномерное распределение
- 19.2 Показательное распределение
- 20. Нормальный закон распределения
- 21. Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило трёх сигма
- Контрольные вопросы
- Контрольные задания
- Литература
- 22. Понятие системы случайных величин
- 23. Закон распределения вероятностей дискретной двумерной случайной величины
- Контрольные вопросы
- 24. Функция распределения двух случайных величин. Вероятность попадания случайной величины в полуполосу и прямоугольник
- 25. Плотность распределения системы двух случайных величин. Законы распределения отдельных величин, входящих в систему
- 26. Условные законы распределения
- Контрольные вопросы
- 27. Зависимые и независимые случайные величины
- 28. Числовые характеристики составляющих системы двух случайных величин. Условное математическое ожидание
- 29. Корреляционный момент. Коэффициент корреляции
- 30. Коррелированность и зависимость случайных величин
- Если величины независимы, то они некоррелированы.
- 31. Линейная регрессия. Прямые линии среднеквадратической регрессии
- Контрольные вопросы
- Контрольные задания
- Литература
- 32. Закон больших чисел
- 33. Центральная предельная теорема
- Контрольные вопросы
- Контрольные задания
- Литература
- Математическая статистика
- 34. Понятие о выборочном методе. Генеральная и выборочная совокупность
- 35. Статистические данные и их представление
- 36. Статистические аналоги теоретических законов распределения
- 36.1 Эмпирическая функция распределения
- 36.2 Полигон и гистограмма
- Контрольные вопросы
- Контрольные задания
- Литература
- 37. Точечное оценивание параметров распределения
- 38. Свойства статистических оценок
- Контрольные вопросы
- Контрольные задания
- 39. Интервальное оценивание параметров распределения
- 40. Интервальное оценивание параметров нормального распределения
- 40.1 Интервальная оценка математического ожидания нормального распределения при известной дисперсии
- 40.2 Интервальная оценка математического ожидания нормального распределения при неизвестной дисперсии
- Контрольные вопросы
- Контрольные задания
- Литература
- 41. Статистические гипотезы
- 42. Критерии проверки гипотез
- Контрольные вопросы
- Контрольные задания
- 43.Критерий согласия Пирсона «Хи-квадрат» ( )
- Контрольные вопросы
- Контрольные задания
- Литература
- 44. Элементы теории корреляции. Задачи корреляционного анализа
- 45. Выбор формы зависимости между переменными. Метод наименьших квадратов
- Контрольные вопросы
- 46. Коэффициент корреляции и проверка его значимости. Линейная регрессия и прогноз
- Контрольные вопросы
- Контрольные задания
- Литература
- Глоссарий