logo
Konspekt_lektsy

4. Распределение Пуассона

Рассмотрим дискретную с.в. Х, которая может принимать только целые неотрицательные значения, образующие бесконечную последовательность: 0, 1, 2, …, m, …

Говорят, что случайная величина Х распределена по закону Пуассона, если вероятность того, что она примет определенное значение m, выражается формулой

,

где , m=0, 1, …

Ряд распределения случайной величины, распределенной по закону Пуассона, имеет вид

X

0

1

2

m

P

Если Х подчиняется распределению Пуассона, то верны следующие соотношения:

М(х)=λ, D(x)=λ.

Характерной особенностью распределения Пуассона является равенство математического ожидания и дисперсии параметру . Это свойство распределения Пуассона часто применяется на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина Х распределена по закону Пуассона. Для этого определяют из опыта статистические характеристики случайной величины – математическое ожидание и дисперсию. Если их значения близки, то это может служить доводом в пользу гипотезы о пуассоновском распределении; резкое различие этих характеристик, напротив, свидетельствует против гипотезы.