26. Условные законы распределения
Как было показано выше, зная закон распределения системы (заданный в виде функции распределения или плотности распределения), можно найти законы распределения составляющих системы. Обратную задачу в общем случае решить нельзя, т.е. зная законы распределения составляющих, невозможно найти закон распределения системы в целом. Причина этого кроется в следующем. Для того чтобы исчерпывающим образом охарактеризовать систему, недостаточно знать распределение каждой из величин, входящих в систему; нужно еще знать зависимость между величинами, входящими в систему. Эта зависимость может быть охарактеризована с помощью условных законов распределения.
Рассмотрим систему дискретных случайных величин Х и Y. Используя теорему умножения вероятностей зависимых событий, выразим вероятность того, что составляющая Х примет значение хi, а Y – значение yj:
Р(хi, yj) = Р(хi)Р(yj|xi).
Аналогично
Р(yj, xi) = Р(yj)Р(xi|yj).
Отсюда можно выразить Р(yj|xi) и Р(xi|yj):
Р(yj|xi)= Р(хi, yj)/ Р(хi),
Р(xi|yj)= Р(yj, xi)/ Р(yj).
Задача. Найти условный закон распределения составляющей Х при условии, что составляющая Y приняла значение у = 2.
Х У | 1 | 2 | 3 | 4 |
2 | 0,1 | 0,05 | 0,2 | 0,05 |
4 | 0,2 | 0,15 | 0,1 | 0,15 |
Решение.
Безусловный закон распределения Х имеет вид:
-
Х
2
4
Р
0,4
0,6
Найдем Р(У=2) = 0,05 + 0,15 = 0,2.
После того, как составляющая Y приняла значение 2, закон распределения Х представляется так:
-
Х
2
4
Р
0,05:0,2=0,25
0,15:0,2=0,75
Как видно, результаты заметно отличаются.
Теперь рассмотрим непрерывную систему случайных величин (Х, Y). Аналогично случаю дискретного распределения системы можно показать, что
,
,
где , - плотности распределения составляющих Х и Y соответственно, а и - условные плотности распределения Y и Х, вычисленные при условии, что другая величина приняла заданное значение.
Т.о., плотность распределения системы двух величин равна плотности распределения одной из величин, входящих в систему, умноженной на условную плотность распределения другой величины, вычисленную при условии, что первая величина приняла заданное значение.
Указанные выше формулы часто называют теоремой умножения законов распределения. Эта теорема в схеме случайных величин аналогична теореме умножения вероятностей в схеме событий.
Разрешив формулы относительно и , получим выражения условных законов распределения через безусловные:
,
,
а применив формулы и , получим
, .
Задача. Случайная величина (Х, Y) равномерно распределена внутри эллипса . Найти безусловные и условные плотности распределения составляющих.
Решение. В данном случае (с = const) внутри эллипса, вне эллипса . Константу с найдем, воспользовавшись характеристическим свойством двумерной плотности вероятности , из уравнения
или
где D – данный эллипс.
Известно, что , где – площадь области D. В данном случае . Подставляя это значение в последнее уравнение, выражаем с: . Таким образом, плотность совместного распределения Х и Y имеет вид: .
Безусловные плотности распределения составляющих Х и Y найдем, взяв интегралы по переменным у и х соответственно:
Теперь выразим условные плотности распределения составляющих Х и Y:
,
.
- Бийский технологический институт (филиал)
- Теория вероятностей и математическая статистика
- Введение
- События. Классификация событий. Классическое определение вероятности
- Статистическое определение вероятности
- Геометрическая вероятность
- Контрольные вопросы
- Контрольные задания
- 4. Операции над событиями. Соотношения между событиями
- 5.Теорема сложения вероятностей
- 6. Теорема умножения вероятностей
- Контрольные вопросы
- Контрольные задания
- 7. Формула полной вероятности
- 8. Теорема гипотез (формула Бейеса)
- Контрольные вопросы
- Контрольные задания
- Литература
- 9. Повторение опытов. Формула Бернулли
- 10. Локальная формула Муавра-Лапласа. Формула Пуассона
- 11. Интегральная формула Муавра-Лапласа. Вероятность отклонения частоты события от его вероятности в n независимых испытаниях
- Контрольные вопросы
- Контрольные задания
- Литература
- 12. Понятие случайной величины. Ряд распределения. Многоугольник распределения
- 13. Функция распределения. Вероятность попадания непрерывной случайной величины в заданный интервал
- Контрольные вопросы
- Контрольные задания
- 14. Плотность распределения
- Контрольные вопросы
- Контрольные задания
- 15. Числовые характеристики случайных величин. Математическое ожидание и его свойства
- Свойства математического ожидания
- 16. Дисперсия и ее свойства. Среднее квадратическое отклонение
- 17. Моменты распределения случайной величины
- Контрольные вопросы
- Контрольные задания
- 18. Типы распределений дискретных случайных величин
- Биномиальное распределение
- 18.2 Гипергеометрическое распределение
- 18.3 Геометрическое распределение
- 4. Распределение Пуассона
- Контрольные вопросы
- Контрольные задания
- 19. Типы распределений непрерывных случайных величин
- 19.1 Равномерное распределение
- 19.2 Показательное распределение
- 20. Нормальный закон распределения
- 21. Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило трёх сигма
- Контрольные вопросы
- Контрольные задания
- Литература
- 22. Понятие системы случайных величин
- 23. Закон распределения вероятностей дискретной двумерной случайной величины
- Контрольные вопросы
- 24. Функция распределения двух случайных величин. Вероятность попадания случайной величины в полуполосу и прямоугольник
- 25. Плотность распределения системы двух случайных величин. Законы распределения отдельных величин, входящих в систему
- 26. Условные законы распределения
- Контрольные вопросы
- 27. Зависимые и независимые случайные величины
- 28. Числовые характеристики составляющих системы двух случайных величин. Условное математическое ожидание
- 29. Корреляционный момент. Коэффициент корреляции
- 30. Коррелированность и зависимость случайных величин
- Если величины независимы, то они некоррелированы.
- 31. Линейная регрессия. Прямые линии среднеквадратической регрессии
- Контрольные вопросы
- Контрольные задания
- Литература
- 32. Закон больших чисел
- 33. Центральная предельная теорема
- Контрольные вопросы
- Контрольные задания
- Литература
- Математическая статистика
- 34. Понятие о выборочном методе. Генеральная и выборочная совокупность
- 35. Статистические данные и их представление
- 36. Статистические аналоги теоретических законов распределения
- 36.1 Эмпирическая функция распределения
- 36.2 Полигон и гистограмма
- Контрольные вопросы
- Контрольные задания
- Литература
- 37. Точечное оценивание параметров распределения
- 38. Свойства статистических оценок
- Контрольные вопросы
- Контрольные задания
- 39. Интервальное оценивание параметров распределения
- 40. Интервальное оценивание параметров нормального распределения
- 40.1 Интервальная оценка математического ожидания нормального распределения при известной дисперсии
- 40.2 Интервальная оценка математического ожидания нормального распределения при неизвестной дисперсии
- Контрольные вопросы
- Контрольные задания
- Литература
- 41. Статистические гипотезы
- 42. Критерии проверки гипотез
- Контрольные вопросы
- Контрольные задания
- 43.Критерий согласия Пирсона «Хи-квадрат» ( )
- Контрольные вопросы
- Контрольные задания
- Литература
- 44. Элементы теории корреляции. Задачи корреляционного анализа
- 45. Выбор формы зависимости между переменными. Метод наименьших квадратов
- Контрольные вопросы
- 46. Коэффициент корреляции и проверка его значимости. Линейная регрессия и прогноз
- Контрольные вопросы
- Контрольные задания
- Литература
- Глоссарий