2.3. Интерполяционный полином Ньютона
Пусть n=0, тогда , если n=1, то выражение для полинома можно записать в виде: , т. е. поведение приближающей функции с добавлением узлов, уточняется вблизи точки х0. Конструкция интерполяционного полинома Ньютона такова:
Рассматривается равномерная сетка, т.е. .
Для дальнейшего анализа вводится понятие конечной разности. Конечной разностью первого порядка называется величина
.
Конечная разность второго порядка определяется по первой
и т.д. конечная разность i – ого порядка определяется через рекуррентное соотношение:
и зависят от значений y в (i + 1) – ой точке.
Выражение вида: называется обобщенным произведением. Его первая конечная разность равна:
. (2.3.1)
Отсюда следует выражение для конечных разностей высших порядков.
Подставляя в , получим: . Далее, определим конечную разность в точке . Из свойства (2.3.1) получим:
Отсюда следует, что . Точно также из (2.3.1) следует выражение для конечной разности второго порядка в точке :
.
Общая формула имеет вид: .
В результате получаем первый интерполяционный полином Ньютона:
(2.3.2)
Построенный таким образом интерполяционный полином проходит через узловые точки.
Второй интерполяционный полином Ньютона позволяет начать интерполяцию с точки , т.е. улучшить точность приближения на правой границе интервала интерполяции
Из структуры полинома следует, что .
;
; ; и так далее. Окончательно получим:
; (2.3.3)
При расчётах и алгоритмизации вычисления интерполяционного полинома применяется таблица конечных разностей:
Таблица 2.2
№ |
|
|
|
|
| … |
0 |
|
|
|
|
| … |
1 |
|
|
|
| … |
|
2 |
|
|
| … |
|
|
3 |
|
| … |
|
|
|
… | … | … |
|
|
|
|
Для построения 1-ого интерполяционного полинома Ньютона необходима 1-ая строка табл. 2.2. Для построения 2-ого интерполяционного полинома Ньютона необходима побочная диагональ таблицы. Обычно при машинных расчётах массив ординат узловых точек последовательно преобразуется в массив коэффициентов , так что они запоминаются в соответствующих элементах массива.
- Численные методы,
- Введение
- 1. Абсолютная и относительная погрешности.
- 1.1. Число верных знаков приближенного числа
- 1.2. Погрешность функций
- 1.3. Погрешность простейших функций двух переменных
- 1.4. Примеры и задания
- 2. Приближение функций
- 2.1. Интерполяционные полиномы
- 2.2. Интерполяционный полином Лагранжа
- 2.3. Интерполяционный полином Ньютона
- 2.3. Примеры и задания для практических занятий
- Второй интерполяционный полином Ньютона:
- 3. Численные методы решений трансцендентных и алгебраических уравнений
- 3.1. Метод простой итерации для решения нелинейных и трансцендентных уравнений
- 3.2. Метод хорд и секущих
- 3.3. Метод касательных
- Скорость сходимости итерационных методов
- Условие выхода из вычислительного процесса по заданной точности в методах простой итерации
- Пример и задание для практических занятий
- 4. Численное интегрирование
- 4.1. Метод Ньютона – Котеса
- 4.2. Метод прямоугольников.
- 4.3. Метод трапеций
- 4.4. Метод парабол. (Метод Симпсона)
- 4.5. Квадратурные формулы Гаусса
- 4.6. Задание для практических занятий
- Численные методы линейной алгебры
- 5.1. Численное решение слау
- 5.2. Прямые методы решения слау
- 5.2.1. Метод Гаусса (Метод исключений)
- 5.2.2. Вычислительная схема метода Гаусса
- 5.2.3. Ортогонализация матриц
- 5.2.4. Решение системы уравнений методом ортогонализации
- 5.3. Итерационные методы решения слау
- 5.3.1. Метод простой итерации
- 5.3.2. Метод Якоби и метод Зейделя
- 5.3.3. Метод оптимального спектрального параметра (осп) для простой итерации
- 5.4. Нахождение собственных векторов и собственных значений матриц
- 5.5. Примеры и задания к теме
- 5.5.1. Прямые методы решения слау
- 5.5.2. Итерационные методы решения слау
- 5.5.3. Нахождение собственных значений и векторов
- 6. Численные методы решения обыкновенных дифференциальных уравнений
- 6.1. Метод разложения в ряд Тейлора
- 6.2. Общая схема метода Рунге - Кутта
- 6.3 Методы Рунге-Кутта низших порядков
- 6.3.1 Метод Эйлера
- 6.3.2. Метод трапеций и прямоугольника
- 6.4. Методы Рунге-Кутта высших порядков
- 6.5. Задание к теме и пример решения оду
- Численное решение начально-краевых задач для дифференциальных уравнений в частных производных
- Конечные разности.
- Гиперболические уравнения
- Параболические уравнения
- Уравнения эллиптического типа
- 7.4.1. Разностная схема уравнений
- Лабораторные задания к теме «Численное решение уравнений в частных производных»
- 7.5.1. Гиперболические уравнения
- 7.5.2. Параболические уравнения
- 7.5.3. Эллиптические уравнения
- Литература
- Содержание