Условие выхода из вычислительного процесса по заданной точности в методах простой итерации
Формула (3.1) выхода из процесса итераций не всегда пригодна для практического использования. Она, например, не выполняется, если функция имеет корень в точке локального минимума. Кроме того, если алгоритм вычисления функции является плохо обусловленным (см. ), относительная ошибка результата вычисления функции возле её корня может значительно превосходить машинную константу, а также желаемую точность определения корня. В этом случае критерий (3.1) не обеспечивает остановку итерационного процесса при достижении заданной величины . Заметим при этом, что в тех методах, в которых выбор текущего интервала основан на вычислении знакопеременности функции на его концах (метод дихотомии, метод хорд и т.п.), применение другого критерия не уменьшает уже возникшую в такой ситуации ошибку, а приводит лишь к выходу из процесса вычислений.
Покажем практический способ выхода из процесса итераций гарантирующий достижение заданной точности вычислений в общем случае простой итерации со знаменателем . Считается, что корень на -ой итерации вычислен с точностью , если . Контролю же в процессе вычислений поддаётся величина . Установив связь между этими величинами, мы получим возможность проводить вычисления с заданной точностью. Заметим, что при . Далее, учитывая неравенство треугольника и (3.4.2)
При получаем
Таким образом, требование
(3.5.1)
обеспечивает заданную точность вычислений .
-
Yandex.RTB R-A-252273-3
Содержание
- Численные методы,
- Введение
- 1. Абсолютная и относительная погрешности.
- 1.1. Число верных знаков приближенного числа
- 1.2. Погрешность функций
- 1.3. Погрешность простейших функций двух переменных
- 1.4. Примеры и задания
- 2. Приближение функций
- 2.1. Интерполяционные полиномы
- 2.2. Интерполяционный полином Лагранжа
- 2.3. Интерполяционный полином Ньютона
- 2.3. Примеры и задания для практических занятий
- Второй интерполяционный полином Ньютона:
- 3. Численные методы решений трансцендентных и алгебраических уравнений
- 3.1. Метод простой итерации для решения нелинейных и трансцендентных уравнений
- 3.2. Метод хорд и секущих
- 3.3. Метод касательных
- Скорость сходимости итерационных методов
- Условие выхода из вычислительного процесса по заданной точности в методах простой итерации
- Пример и задание для практических занятий
- 4. Численное интегрирование
- 4.1. Метод Ньютона – Котеса
- 4.2. Метод прямоугольников.
- 4.3. Метод трапеций
- 4.4. Метод парабол. (Метод Симпсона)
- 4.5. Квадратурные формулы Гаусса
- 4.6. Задание для практических занятий
- Численные методы линейной алгебры
- 5.1. Численное решение слау
- 5.2. Прямые методы решения слау
- 5.2.1. Метод Гаусса (Метод исключений)
- 5.2.2. Вычислительная схема метода Гаусса
- 5.2.3. Ортогонализация матриц
- 5.2.4. Решение системы уравнений методом ортогонализации
- 5.3. Итерационные методы решения слау
- 5.3.1. Метод простой итерации
- 5.3.2. Метод Якоби и метод Зейделя
- 5.3.3. Метод оптимального спектрального параметра (осп) для простой итерации
- 5.4. Нахождение собственных векторов и собственных значений матриц
- 5.5. Примеры и задания к теме
- 5.5.1. Прямые методы решения слау
- 5.5.2. Итерационные методы решения слау
- 5.5.3. Нахождение собственных значений и векторов
- 6. Численные методы решения обыкновенных дифференциальных уравнений
- 6.1. Метод разложения в ряд Тейлора
- 6.2. Общая схема метода Рунге - Кутта
- 6.3 Методы Рунге-Кутта низших порядков
- 6.3.1 Метод Эйлера
- 6.3.2. Метод трапеций и прямоугольника
- 6.4. Методы Рунге-Кутта высших порядков
- 6.5. Задание к теме и пример решения оду
- Численное решение начально-краевых задач для дифференциальных уравнений в частных производных
- Конечные разности.
- Гиперболические уравнения
- Параболические уравнения
- Уравнения эллиптического типа
- 7.4.1. Разностная схема уравнений
- Лабораторные задания к теме «Численное решение уравнений в частных производных»
- 7.5.1. Гиперболические уравнения
- 7.5.2. Параболические уравнения
- 7.5.3. Эллиптические уравнения
- Литература
- Содержание