POS-KSC
7.5.3. Эллиптические уравнения
Решить заданную краевую задачу методом сеток, сведением её к СЛАУ и последующим решением прямым (стандартным) и итерационным (Зейделя-ОСП) методами. Сравнить с существующим строгим решением.
Варианты заданий для краевой задачи с уравнениями эллиптического типа (см. 7.4).
№ п/п | Уравнение |
|
|
|
|
|
|
|
| |
3.1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0.2, 0.1 | - | |
3.2 | 2 | 1 | 1 |
|
|
|
| 0.2, 0.1 | -1 | |
3.3 | 1 | 1 | 1 | 0.2, 0.1 | - | |||||
3.4 | 3 | 1 | 1 |
| 0.2, 0.1 | 0, | ||||
3.5 | 1 | 1 | 1 | 0 |
| 0 |
| 0.2, 0.1 | - | |
3.6 | 2 | 1 | 1 |
|
|
|
| 0.2, 0.1 |
| |
3.7 | 1 | 4 | 4 | 10 | 120 | 90 | 40 | 0.5, 0.25 | - | |
3.8 | 2 | 1 | 1 | 0.2, 0.1 | - 2 | |||||
3.9 | 1 | 2 | 2 | 10 | 20 | 30 | 40 | 0.25,0.1 | - | |
3. 10 | 2 | 1 | 1 |
|
|
|
| 0.2, 0.1 | 2 |
уравнения: 1-Лапласа, 2-Пуассона, 3-Гельмгольца
Yandex.RTB R-A-252273-3
Содержание
- Численные методы,
- Введение
- 1. Абсолютная и относительная погрешности.
- 1.1. Число верных знаков приближенного числа
- 1.2. Погрешность функций
- 1.3. Погрешность простейших функций двух переменных
- 1.4. Примеры и задания
- 2. Приближение функций
- 2.1. Интерполяционные полиномы
- 2.2. Интерполяционный полином Лагранжа
- 2.3. Интерполяционный полином Ньютона
- 2.3. Примеры и задания для практических занятий
- Второй интерполяционный полином Ньютона:
- 3. Численные методы решений трансцендентных и алгебраических уравнений
- 3.1. Метод простой итерации для решения нелинейных и трансцендентных уравнений
- 3.2. Метод хорд и секущих
- 3.3. Метод касательных
- Скорость сходимости итерационных методов
- Условие выхода из вычислительного процесса по заданной точности в методах простой итерации
- Пример и задание для практических занятий
- 4. Численное интегрирование
- 4.1. Метод Ньютона – Котеса
- 4.2. Метод прямоугольников.
- 4.3. Метод трапеций
- 4.4. Метод парабол. (Метод Симпсона)
- 4.5. Квадратурные формулы Гаусса
- 4.6. Задание для практических занятий
- Численные методы линейной алгебры
- 5.1. Численное решение слау
- 5.2. Прямые методы решения слау
- 5.2.1. Метод Гаусса (Метод исключений)
- 5.2.2. Вычислительная схема метода Гаусса
- 5.2.3. Ортогонализация матриц
- 5.2.4. Решение системы уравнений методом ортогонализации
- 5.3. Итерационные методы решения слау
- 5.3.1. Метод простой итерации
- 5.3.2. Метод Якоби и метод Зейделя
- 5.3.3. Метод оптимального спектрального параметра (осп) для простой итерации
- 5.4. Нахождение собственных векторов и собственных значений матриц
- 5.5. Примеры и задания к теме
- 5.5.1. Прямые методы решения слау
- 5.5.2. Итерационные методы решения слау
- 5.5.3. Нахождение собственных значений и векторов
- 6. Численные методы решения обыкновенных дифференциальных уравнений
- 6.1. Метод разложения в ряд Тейлора
- 6.2. Общая схема метода Рунге - Кутта
- 6.3 Методы Рунге-Кутта низших порядков
- 6.3.1 Метод Эйлера
- 6.3.2. Метод трапеций и прямоугольника
- 6.4. Методы Рунге-Кутта высших порядков
- 6.5. Задание к теме и пример решения оду
- Численное решение начально-краевых задач для дифференциальных уравнений в частных производных
- Конечные разности.
- Гиперболические уравнения
- Параболические уравнения
- Уравнения эллиптического типа
- 7.4.1. Разностная схема уравнений
- Лабораторные задания к теме «Численное решение уравнений в частных производных»
- 7.5.1. Гиперболические уравнения
- 7.5.2. Параболические уравнения
- 7.5.3. Эллиптические уравнения
- Литература
- Содержание