logo
POS-KSC

Гиперболические уравнения

В качестве примера гиперболического уравнения рассматри-вается волновое уравнение колебаний эластичной струны , (7.2.1) с граничными условиями (закрепление струны на концах) , (7.2.2) и начальными условиями первого рода для функции (отклонение от положения равновесия) и второго рода для её производной (скорости отклонения)

, для (7.2.3)

На сетке (7.1.1) сеточная функция удовлетворяет следующим соотношениям, следующим из (7.2.1) и (7.1.4)

Обозначим . После небольших преобразований получаем явное выражение для значения сеточной функции на слое по времени через её значения на и слоях:

(7.2.4) для

Сеточный шаблон вычислений по формуле (7.2.4) является пятиточечным, т.к. связывает между собой пять соседних узлов сетки вокруг т. , включая её. Для того, чтобы вычисления по формуле (7.2.4) были устойчивы, необходимо выполнение соотношения . Таким образом, условия устойчивости вычислений по явной схеме (7.2.4) накладывают ограничения на шаг по времени при заданном шаге по пространственной координате.

Для определения значений сеточной функции на двух начальных слоях и используем заданные начальные условия (7.2.2), (7.2.3) и правую конечную разность порядка для аппроксимации первой производной в начальной точке. Использование конечной разности первого порядка точности вносит на начальном этапе ошибку большую, чем при аппроксимации уравнения во внутренних точках. В результате получаем для значений на слоях , (7.2.5)

На рис. 1 показан полупериод колебаний струны рассчитанный по формулам (7.2.4), (7.2.5) при следующих исходных данных, граничных и начальных условиях: , , , , , . Шаги сетки по пространственной координате и по времени ,

Число шагов по и по соответственно

рис.1.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4