2.2. Интерполяционный полином Лагранжа
Рассмотрим в начале n=1 (2.1):
.
Подставляя коэффициенты в , получим:
то есть полином представлен в виде суммы двух линейных функций, независящих от ординат, умноженных на ординаты и обладающих свойством:
.
В этом состоит идея построения интерполяционного полинома Лагранжа. Для произвольного значения n запишем интерполяционный полином в виде:
,
где полиномы степени не выше n, не зависящие от ординат, и обладающие следующими свойством: . Из равенства, следует, что имеет n корней (рассматриваются однократные корни).
где - коэффициент, который находится из условия. В результате интерполяционный полином Лагранжа имеет вид:
(2.2.1)
Достоинства интерполяционного полинома Лагранжа является простота конструкции. При заданном наборе абсцисс узловых точек и выбранной расчетной точке упрощается вычисления для различных ординат . Недостаток – добавление (n+1)-ого узла требует перерасчета всех слагаемых.
Погрешность вычисления: пусть – функция n+1 – раз дифференцируемая и – приближающий её интерполяционный полином.
,
где
Интерполяционный полином Лагранжа при линейных преобразованиях x = at + b (t- новая переменная) – сохраняет свой вид.
Yandex.RTB R-A-252273-3- Численные методы,
- Введение
- 1. Абсолютная и относительная погрешности.
- 1.1. Число верных знаков приближенного числа
- 1.2. Погрешность функций
- 1.3. Погрешность простейших функций двух переменных
- 1.4. Примеры и задания
- 2. Приближение функций
- 2.1. Интерполяционные полиномы
- 2.2. Интерполяционный полином Лагранжа
- 2.3. Интерполяционный полином Ньютона
- 2.3. Примеры и задания для практических занятий
- Второй интерполяционный полином Ньютона:
- 3. Численные методы решений трансцендентных и алгебраических уравнений
- 3.1. Метод простой итерации для решения нелинейных и трансцендентных уравнений
- 3.2. Метод хорд и секущих
- 3.3. Метод касательных
- Скорость сходимости итерационных методов
- Условие выхода из вычислительного процесса по заданной точности в методах простой итерации
- Пример и задание для практических занятий
- 4. Численное интегрирование
- 4.1. Метод Ньютона – Котеса
- 4.2. Метод прямоугольников.
- 4.3. Метод трапеций
- 4.4. Метод парабол. (Метод Симпсона)
- 4.5. Квадратурные формулы Гаусса
- 4.6. Задание для практических занятий
- Численные методы линейной алгебры
- 5.1. Численное решение слау
- 5.2. Прямые методы решения слау
- 5.2.1. Метод Гаусса (Метод исключений)
- 5.2.2. Вычислительная схема метода Гаусса
- 5.2.3. Ортогонализация матриц
- 5.2.4. Решение системы уравнений методом ортогонализации
- 5.3. Итерационные методы решения слау
- 5.3.1. Метод простой итерации
- 5.3.2. Метод Якоби и метод Зейделя
- 5.3.3. Метод оптимального спектрального параметра (осп) для простой итерации
- 5.4. Нахождение собственных векторов и собственных значений матриц
- 5.5. Примеры и задания к теме
- 5.5.1. Прямые методы решения слау
- 5.5.2. Итерационные методы решения слау
- 5.5.3. Нахождение собственных значений и векторов
- 6. Численные методы решения обыкновенных дифференциальных уравнений
- 6.1. Метод разложения в ряд Тейлора
- 6.2. Общая схема метода Рунге - Кутта
- 6.3 Методы Рунге-Кутта низших порядков
- 6.3.1 Метод Эйлера
- 6.3.2. Метод трапеций и прямоугольника
- 6.4. Методы Рунге-Кутта высших порядков
- 6.5. Задание к теме и пример решения оду
- Численное решение начально-краевых задач для дифференциальных уравнений в частных производных
- Конечные разности.
- Гиперболические уравнения
- Параболические уравнения
- Уравнения эллиптического типа
- 7.4.1. Разностная схема уравнений
- Лабораторные задания к теме «Численное решение уравнений в частных производных»
- 7.5.1. Гиперболические уравнения
- 7.5.2. Параболические уравнения
- 7.5.3. Эллиптические уравнения
- Литература
- Содержание