1. Элементы векторной алгебры и аналитической геометрии
1 — 10. Даны векторы а(a1; а2; а3), b(b1; b2; b3), c(c1; с2; с3) и d(d1; d2; d3) в некотором базисе. Показать, что векторы а, Ь, с образуют базис и найти координаты вектора d в этом базисе.
11—20. Даны координаты вершин пирамиды A1A2A3A4. Найти 1) длину ребра А1А2; 2) угол между ребрами A1A2 и A1A4; 3) угол между ребром A1A4 и гранью A1A2A3; 4) площадь грани А1А2А3 5) объем пирамиды; 6) уравнения прямой A1A2 7) уравнение плоскости A1A2A3; 8) уравнения высоты, опущенной из вершины A4 на грань A1A2A3. Сделать чертеж
21. Уравнение одной из сторон квадрата х+3у—5=0. Составить уравнения трех остальных сторон квадрата, если Р(—1; 0)—точка пересечения его диагоналей. Сделать чертеж.
22. Даны уравнения одной из сторон ромба х—3y+10= и одной из его диагоналей х+4у—4=0, диагонали ромба пересекаются в точке Р(0; 1). Найти уравнения остальных сторон ромба. Сделать чертеж.
23. Уравнения двух сторон параллелограмма x+2y+2=0 и x+y—4=0, а уравнение одной из его диагоналей х—2=0. Найти координаты вершин параллелограмма. Сделать чертеж.
24. Даны две вершины A(-3; 3) и B(5; —1) и точка C(4; 3) пересечения высот треугольника. Составить уравнения его сторон. Сделать чертеж.
25. Даны вершины А(—3; —2), В(4; —1), С(1; 3) трапеции ABCD (AD||BC). Известно, что диагонали трапеции взаимно перпендикулярны. Найти координаты вершины D этой трапеция. Сделать чертеж.
26. Даны уравнения двух сторон треугольника 5х—4у+5=0 и 4х+у—9=0. Его медианы пересекаются в точке Р(0, 2). Составить уравнение третьей стороны треугольника. Сделать чертеж.
27. Даны две вершины А (2; —2) и 5(3; —1) и точка Р(1; 0) пересечения медиан треугольника ABC. Составить уравнение высоты треугольника, проведенной через третью вершину С. Сделать чертеж.
28. Даны уравнения двух высот треугольника х+у=4 и y=2x и одна из его вершин А(0; 2). Составить уравнения сторон треугольника. Сделать чертеж.
29. Даны уравнения двух медиан треугольника х—2у+1=0 и у—1=0 и одна из его вершин A(1; 3). Составить уравнения его сторон. Сделать чертеж.
30. Две стороны треугольника заданы уравнениями 5х—2у—8=0 и 3х—2у—8=0, а середина третьей стороны совпадает с началом координат. Составить уравнение этой стороны. Сделать чертеж.
31. Составить уравнение и построить линию, расстояния каждой точки которой от начала координат и от точки А(5; 0) относятся как 2:1.
32. Составить уравнение и построить линию, расстояние каждой точки которой от точки А(—1; 0) вдвое меньше расстояния ее от прямой х=-4.
33. Составить уравнение и построить линию, расстояния каждой точки которой от точки A(2; 0) и от прямой 5x+8=0 относятся, как 5:4.
34. Составить уравнение и построить линию, каждая точка которой находится вдвое дальше от точки А(4; 0), чем от точки В(1; 0),
35. Составить уравнение и построить линию, расстояния каждой точки которой от точки A(2; 0) и от прямой 2x+5=0 относятся, как 4:5.
36. Составить уравнение и построить линию, расстояние каждой точки которой от точки А(3; 0) вдвое меньше расстояния от точки B(26; 0).
37. Составить уравнение и построить линию, каждая точка которой одинаково удалена от точки A(0; 2) и от прямой y—4=0.
38. Составить уравнение и построить линию, каждая точка которой равноотстоит от оси ординат и от окружности х2+у2=Ьк.
Замечание. Напомним, что за расстояние от точки А до фигуры Ф принимается наименьшее из расстояний между точкой A и точками фигуры Ф.
39. Составить уравнение и построить линию, каждая точка которой равноудалена от точки Л (2; 6) и от прямой y+2 = 0.
40. Составить уравнение и построить линию, каждая точка которой отстоит от точки A(—4; 0) втрое дальше, чем от начала координат.
41—50. Линия задана уравнением r=r(φ) в полярной системе координат. Требуется: 1) построить линию по точкам начиная от φ=0 до φ=2π и придавая φ значения через промежуток π/8; 2) найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс — с полярной осью; 3) по уравнению в декартовой прямоугольной системе координат определить, какая это линия.
- II. Введение в математический анализ
- III. Дифференциальное исчисление функций одной переменной
- IV. Исследование функций с помощью производных
- V. Векторные и комплексные функции действительного переменного
- VI. Неопределенный интеграл
- VII. Определенный интеграл
- VIII. Функции нескольких переменных
- IX. Обыкновенные дифференциальные уравнения
- X. Системы обыкновенных дифференциальных уравнений
- XVIII. Кратные интегралы
- XIX. Криволинейные и поверхностные интегралы
- XX. Векторный анализ
- XXI. Элементы теории уравнений математической физики
- XXII. Элементы теории функций комплексного переменного и операционное исчисление
- XXIII. Основные численные методы
- XXIV. Теория вероятностей и элементы математической статистики
- II. Введение в математический анализ.
- III. Дифференциальное исчисление функций одной переменной
- IV. Исследование функций с помощью производных
- V. Векторные и комплексные функции действительного переменного
- VI. Неопределенный интеграл
- VII. Определенный интеграл
- VIII. Функции нескольких переменных
- IX. Обыкновенные дифференциальные уравнения
- X*. Системы обыкновенных дифференциальных уравнений
- XI. Числовые ряды
- XVII. Основные уравнения математической физики
- XVIII*. Операционное исчисление
- XIX. Теория вероятностей и математическая статистика
- XX. Основные численные методы
- Тема I. Векторная алгебра
- Тема II. Поверхности и линии
- Тема III. Элементы линейной алгебры
- 1. Матрицы и линейные операции над ними
- 2. Определители
- 3. Системы линейных уравнений. Правило Крамера
- 4. Ранг матрицы. Теорема Кронекера—Капелли. Метод Гаусса
- 5. Произведение матриц
- 6. Арифметическое пространство
- 7. Линейные пространства
- 8. Евклидовы пространства
- 9. Линейные преобразования (операторы)
- 10. Квадратичные формы
- 11. Комплексные числа
- Тема IV. Введение в математический анализ
- 1. Число. Переменная. Функция
- 2. Предел и непрерывность функций
- Тема V. Производная и дифференциал
- 1. Производная
- 2. Дифференциал
- 3. Производные и дифференциалы высших порядков
- 4. Свойства дифференцируемых функций
- 5. Формула Тейлора
- Тема VI. Возрастание и убывание функции. Экстремумы
- 1. Возрастание и убывание функций
- 2. Экстремумы
- Тема VII. Построение графиков функции
- 1. Выпуклость и вогнутость графика функции Точки перегиба
- 2. Асимптоты
- 3. Общая схема построения графиков функций
- Тема VIII. Векторные и комплексные функции
- 1. Векторная функция скалярного аргумента
- 2. Кривизна кривой. Формулы Френе
- 3. Комплексные функции. Многочлен в комплексной области
- Тема IX. Приближенное решение уравнении. Интерполяция
- 1. Приближенное решение уравнений
- 2. Интерполяция
- Тема X. Функции нескольких переменных
- 7. Метод наименьших квадратов. Понятие об итерационных методах решения систем уравнений
- Тема XI. Неопределенный интеграл
- Тема XII. Определенный интеграл
- 1. Определение, свойства и вычисление определенного интеграла
- 2. Приближенное вычисление определенного интеграла
- 3. Несобственные интегралы
- 4. Интегралы, зависящие от параметра.
- 5. Геометрические приложения определенного интеграла
- Тема XIII. Обыкновенные дифференциальные уравнения
- 1. Дифференциальные уравнения первого порядка
- 2. Дифференциальные уравнения высших порядков
- 3. Линейные дифференциальные уравнения
- Тема XIV. Системы обыкновенных дифференциальных уравнении. Элементы теории устойчивости
- 1. Системы обыкновенных дифференциальных уравнений
- 2. Системы линейных дифференциальных уравнений с постоянными коэффициентами
- 3. Элементы теории устойчивости
- Тема XV. Кратные интегралы
- 1. Двойной интеграл
- 2. Тройной интеграл
- Тема XVI. Криволинейные и поверхностные интегралы
- 1. Криволинейные интегралы; их определение, свойства и приложения
- 2. Формула Грина.
- 3. Поверхностные интегралы
- Тема XVII. Векторный анализ
- 1. Скалярное и векторное поле. Градиент скалярного поля. Циркуляция, поток, дивергенция и ротор векторного поля
- 2. Формула Стокса
- 3. Формула Остроградского
- 4. Потенциальные и соленоидальные векторные поля
- 5. Операторы Гамильтона и Лапласа
- Тема XVIII. Ряды
- 1. Числовые ряды
- 2. Функциональные ряды
- 3. Степенные ряды
- 4. Приложения степенных рядов к приближенным вычислениям
- Тема XIX. Ряды фурье. Интеграл фурье
- Тема XX. Элементы теории уравнений математической физики
- Тема XXI. Элементы теории функции комплексного переменного
- Тема XXII. Операционное исчисление
- Тема XXIII. Теория вероятностей
- 1. Случайные события
- 2. Случайные величины
- 3. Цепи Маркова
- Тема XXIV. Элементы математической статистики
- 1. Элементы векторной алгебры и аналитической геометрии
- 2. Элементы линейной алгебры
- 3. Введение в математический анализ
- 4. Производная и её приложения
- 5. Приложения дифференциального исчисления
- 6. Дифференциальное исчисление функций нескольких переменных
- 7. Неопределенный и определенный интегралы
- 8. Дифференциальные уравнения
- 9. Кратные, криволинейные и поверхностные интегралы.
- 10. Ряды
- 11. Уравнения математической физики.
- 12. Теория вероятности и математическая статистика.