XX. Основные численные методы
94. Алгоритмы и их свойства. Блок-схема алгоритмов. Основные типы вычислительных процессов.
95. Приближение функции многочленом по методу наименьших квадратов.
96. Интерполяция. Интерполяционный многочлен Лагранжа. Линейная и квадратичная интерполяция. Конечные разности и их свойства.
97. Решение линейных систем методом Гаусса—Жордана. Обращение матриц и вычисление определителей по методу Гаусса—Жордана.
98. Итерационные методы решения уравнений. Понятие об итерационных методах решения систем уравнений.
99. Численные методы решения задачи Коши для обыкновенного дифференциального уравнения первого порядка. Метод Эйлера и его модификации. Метод Рунге—Кутта.
100. Понятие о методе сеток решения краевых задач математическом физики.
ЛИТЕРАТУРА
1. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. — М.: Наука, 1980, 1984.
2. Ефимов Н. В. Квадратичные формы и матрицы. — М.: Физматгиз, 1962—1963; М.: Наука, 1964—1975.
3. Клетеник Д. В. Сборник задач по аналитической геометрии.—М.: Гостехиздат, 1954—1956; М.: Физматгиз, 1958—1963; М.: Наука, 1965—1980.
4. Пискунов Н. С. Дифференциальное и интегральное исчисления для втузов. — М.: Наука, 1970—1985, т. 1, 2.
5. Задачи и упражнения по математическому анализу для втузов/Под ред. Б. П. Демидовича.—М.- Физматгиз, 1959 — 1963; М: Наука, 1964—1978.
6. Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной —М.: Наука, 1967—1979.
7. Краснов М. Л., Киселев А. И., Макаренко Г. И. Функции комплексного переменного. Операционное исчисление. Теория устойчивости (задачи и упражнения). — М.- Наука, 1971.
8. Чистяков В. П. Курс теории вероятностей. — М.: Наука 1982.
9. Данко П. Е., Попов А. Г., Кожевникова Т. Я. Высшая математика в упражнениях и задачах. — М.: Высшая школа 1980,4. I, II.
10. Бугров Я. С, Никольский СМ. Высшая математика. Элементы линейной алгебры и аналитической геометрии. — М. Наука, 1980, 1984.
11. Бугров Я. С, Никольский СМ. Высшая математика Дифференциальное и интегральное исчисление. — М.: Наука, 1980, 1984.
12. Бугров Я. С, Никольский С. М. Высшая математика. Дифференциальные уравнения. Кратные интегралы. Ряды Функции комплексного переменного. — М.: Наука, 1981, 1985.
13. Бугров Я. С, Никольский С. М. Высшая математика. Задачник. — М.: Наука, 1982.
МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ КУРСА «ВЫСШАЯ МАТЕМАТИКА»
Курс высшей математики разбит на темы и пункты, в которых даны подробные указания литературы, рекомендуемой для изучения, и задач для самостоятельного решения. Номера в квадратных скобках [ ] означают пособия из приведенного выше списка литературы; например [1] обозначает учебник Д. В. Беклемишева и т. д.
В случае необходимости по некоторым вопросам даны пояснения, дополняющие материал рекомендуемых пособий.
В каждой теме приведены вопросы для самопроверки. Указано также, после изучения каких тем студент должен выполнить очередную контрольную работу.
Приступая к изучению курса высшей математики, студент должен прочитать из пособия [11], § 1.1—1.3. Там он найдет общую характеристику предмета математики, начальные сведения из теории множеств и некоторые начальные понятия о символике математической логики, используемые в дальнейшем на протяжении всего курса.
В пособии [9] имеется довольно большое число решенных задач, с которыми студенту рекомендуется познакомиться при изучении соответствующего материала.
Yandex.RTB R-A-252273-3
- II. Введение в математический анализ
- III. Дифференциальное исчисление функций одной переменной
- IV. Исследование функций с помощью производных
- V. Векторные и комплексные функции действительного переменного
- VI. Неопределенный интеграл
- VII. Определенный интеграл
- VIII. Функции нескольких переменных
- IX. Обыкновенные дифференциальные уравнения
- X. Системы обыкновенных дифференциальных уравнений
- XVIII. Кратные интегралы
- XIX. Криволинейные и поверхностные интегралы
- XX. Векторный анализ
- XXI. Элементы теории уравнений математической физики
- XXII. Элементы теории функций комплексного переменного и операционное исчисление
- XXIII. Основные численные методы
- XXIV. Теория вероятностей и элементы математической статистики
- II. Введение в математический анализ.
- III. Дифференциальное исчисление функций одной переменной
- IV. Исследование функций с помощью производных
- V. Векторные и комплексные функции действительного переменного
- VI. Неопределенный интеграл
- VII. Определенный интеграл
- VIII. Функции нескольких переменных
- IX. Обыкновенные дифференциальные уравнения
- X*. Системы обыкновенных дифференциальных уравнений
- XI. Числовые ряды
- XVII. Основные уравнения математической физики
- XVIII*. Операционное исчисление
- XIX. Теория вероятностей и математическая статистика
- XX. Основные численные методы
- Тема I. Векторная алгебра
- Тема II. Поверхности и линии
- Тема III. Элементы линейной алгебры
- 1. Матрицы и линейные операции над ними
- 2. Определители
- 3. Системы линейных уравнений. Правило Крамера
- 4. Ранг матрицы. Теорема Кронекера—Капелли. Метод Гаусса
- 5. Произведение матриц
- 6. Арифметическое пространство
- 7. Линейные пространства
- 8. Евклидовы пространства
- 9. Линейные преобразования (операторы)
- 10. Квадратичные формы
- 11. Комплексные числа
- Тема IV. Введение в математический анализ
- 1. Число. Переменная. Функция
- 2. Предел и непрерывность функций
- Тема V. Производная и дифференциал
- 1. Производная
- 2. Дифференциал
- 3. Производные и дифференциалы высших порядков
- 4. Свойства дифференцируемых функций
- 5. Формула Тейлора
- Тема VI. Возрастание и убывание функции. Экстремумы
- 1. Возрастание и убывание функций
- 2. Экстремумы
- Тема VII. Построение графиков функции
- 1. Выпуклость и вогнутость графика функции Точки перегиба
- 2. Асимптоты
- 3. Общая схема построения графиков функций
- Тема VIII. Векторные и комплексные функции
- 1. Векторная функция скалярного аргумента
- 2. Кривизна кривой. Формулы Френе
- 3. Комплексные функции. Многочлен в комплексной области
- Тема IX. Приближенное решение уравнении. Интерполяция
- 1. Приближенное решение уравнений
- 2. Интерполяция
- Тема X. Функции нескольких переменных
- 7. Метод наименьших квадратов. Понятие об итерационных методах решения систем уравнений
- Тема XI. Неопределенный интеграл
- Тема XII. Определенный интеграл
- 1. Определение, свойства и вычисление определенного интеграла
- 2. Приближенное вычисление определенного интеграла
- 3. Несобственные интегралы
- 4. Интегралы, зависящие от параметра.
- 5. Геометрические приложения определенного интеграла
- Тема XIII. Обыкновенные дифференциальные уравнения
- 1. Дифференциальные уравнения первого порядка
- 2. Дифференциальные уравнения высших порядков
- 3. Линейные дифференциальные уравнения
- Тема XIV. Системы обыкновенных дифференциальных уравнении. Элементы теории устойчивости
- 1. Системы обыкновенных дифференциальных уравнений
- 2. Системы линейных дифференциальных уравнений с постоянными коэффициентами
- 3. Элементы теории устойчивости
- Тема XV. Кратные интегралы
- 1. Двойной интеграл
- 2. Тройной интеграл
- Тема XVI. Криволинейные и поверхностные интегралы
- 1. Криволинейные интегралы; их определение, свойства и приложения
- 2. Формула Грина.
- 3. Поверхностные интегралы
- Тема XVII. Векторный анализ
- 1. Скалярное и векторное поле. Градиент скалярного поля. Циркуляция, поток, дивергенция и ротор векторного поля
- 2. Формула Стокса
- 3. Формула Остроградского
- 4. Потенциальные и соленоидальные векторные поля
- 5. Операторы Гамильтона и Лапласа
- Тема XVIII. Ряды
- 1. Числовые ряды
- 2. Функциональные ряды
- 3. Степенные ряды
- 4. Приложения степенных рядов к приближенным вычислениям
- Тема XIX. Ряды фурье. Интеграл фурье
- Тема XX. Элементы теории уравнений математической физики
- Тема XXI. Элементы теории функции комплексного переменного
- Тема XXII. Операционное исчисление
- Тема XXIII. Теория вероятностей
- 1. Случайные события
- 2. Случайные величины
- 3. Цепи Маркова
- Тема XXIV. Элементы математической статистики
- 1. Элементы векторной алгебры и аналитической геометрии
- 2. Элементы линейной алгебры
- 3. Введение в математический анализ
- 4. Производная и её приложения
- 5. Приложения дифференциального исчисления
- 6. Дифференциальное исчисление функций нескольких переменных
- 7. Неопределенный и определенный интегралы
- 8. Дифференциальные уравнения
- 9. Кратные, криволинейные и поверхностные интегралы.
- 10. Ряды
- 11. Уравнения математической физики.
- 12. Теория вероятности и математическая статистика.