logo
math

Тема XI. Неопределенный интеграл

1. Определение и свойства неопределенного интеграла

Литература. [4], гл. X, § 1—3, упр. 2, 5, 7, 9, 11, 14, 16, 17, 25, 41, 46, 49, 58, 60, 66.

2. Основные методы интегрирования

Литература [4], гл. X, § 4, упр. 27, 28, 33, 37, 47, 51, 65, 72, 83, 89, 91, 94, 100, 101; § 6, упр. 127—131, 134, 135, 138, 140, 143, 145.

Можно использовать также [5], гл. IV, § 1—3.

3. Стандартные методы интегрирования некоторых классов функций

Литература. [4], гл. X, § 5, упр. 102, 105, 107, ПО, 112, ИЗ, 115, 116, 123, 125; § 7—9, упр. 156, 163, 164, 167, 169; § 10, упр. 170, 176, 177; § 12, упр. 196, 198, 203, 204, 209, 212, 214, 216; § 13, упр. 178, 180

Можно использовать также [5], гл. IV, § 4—10.

4. Использование таблиц интегралов

Литература. [4], гл. X, § 14.

Имеются элементарные функции, интегралы от которых хотя, конечно, и существуют, но не выражаются через элементарные функции Приведем несколько интегралов, «не берущихся в конечном виде».

Эти и подобные интегралы определяют новые виды функций, отличных от элементарных. Многие из этих функций имеют специальные названия: функция, определяемая первым из указанных интегралов, называется интегральным синусом, вторым — интегральным косинусом, третьим — интегральным логарифмом, четвертым и пятым — интегралами Френеля, последним — эллиптической функцией.

Заметим, что функции, определяемые с помощью интегралов, имеют обширные и важные применения в технике и естествознании. Для таких функций составлены таблицы их приближенных значений.

Вопросы для самопроверки

  1. Дайте определение первообразной функции.

  2. Укажите геометрический смысл совокупности первообразных функций. Что называется неопределенным интегралом?

  3. Напишите таблицу основных интегралов.

  4. Докажите простейшие свойства неопределенного интеграла.

  5. Найдите ∫(2х—l)2dx двумя способами: а) непосредственно как интеграл от степенной функции со сложным аргументом; б) раскрыв скобки и проинтегрировав полученную сумму. Покажите, что полученные результаты не противоречат друг другу.

  6. Выведите формулу замены переменной в неопределенном интеграле.

  7. Выведите формулу интегрирования по частям для неопределенного интеграла. Укажите типы интегралов, вычисление которых целесообразно производить с помощью метода интегрирования по частям.

  8. Изложите методы интегрирования простейших рациональных дробей I, II, III и IV типов.

  9. Сформулируйте теорему о разложении многочлена на простершие множители. Изложите правило разложения правильной рациональной дроби на простейшие дроби в случае простых действительных корней знаменателя. Приведите примеры.

  10. Изложите правило разложения правильной рациональной дроби на простейшие дроби в случае действительных кратных корней знаменателя. Приведите примеры.

  11. Изложите правило разложения правильной рациональной дроби на простейшие дроби для случая, когда среди корней знаменателя имеются пары простых комплексно-сопряженных корней. Приведите пример.

  12. Изложите правило разложения правильной рациональной дроби для случая, когда среди корней знаменателя имеется пара кратных комплексно-сопряженных корней. Приведите пример.

  13. Изложите методы нахождения интегралов вида

где p, q,..., r — рациональные числа; R— рациональная функция. Приведите пример.

  1. Изложите метод нахождения интегралов вида ∫R(sinx, cosх)dх, где R — рациональная функция. Приведите примеры.

  2. В чем состоит общая идея метода рационализации при интегрировании иррациональных и трансцендентных функций?

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4