Тема XI. Неопределенный интеграл
1. Определение и свойства неопределенного интеграла
Литература. [4], гл. X, § 1—3, упр. 2, 5, 7, 9, 11, 14, 16, 17, 25, 41, 46, 49, 58, 60, 66.
2. Основные методы интегрирования
Литература [4], гл. X, § 4, упр. 27, 28, 33, 37, 47, 51, 65, 72, 83, 89, 91, 94, 100, 101; § 6, упр. 127—131, 134, 135, 138, 140, 143, 145.
Можно использовать также [5], гл. IV, § 1—3.
3. Стандартные методы интегрирования некоторых классов функций
Литература. [4], гл. X, § 5, упр. 102, 105, 107, ПО, 112, ИЗ, 115, 116, 123, 125; § 7—9, упр. 156, 163, 164, 167, 169; § 10, упр. 170, 176, 177; § 12, упр. 196, 198, 203, 204, 209, 212, 214, 216; § 13, упр. 178, 180
Можно использовать также [5], гл. IV, § 4—10.
4. Использование таблиц интегралов
Литература. [4], гл. X, § 14.
Имеются элементарные функции, интегралы от которых хотя, конечно, и существуют, но не выражаются через элементарные функции Приведем несколько интегралов, «не берущихся в конечном виде».
Эти и подобные интегралы определяют новые виды функций, отличных от элементарных. Многие из этих функций имеют специальные названия: функция, определяемая первым из указанных интегралов, называется интегральным синусом, вторым — интегральным косинусом, третьим — интегральным логарифмом, четвертым и пятым — интегралами Френеля, последним — эллиптической функцией.
Заметим, что функции, определяемые с помощью интегралов, имеют обширные и важные применения в технике и естествознании. Для таких функций составлены таблицы их приближенных значений.
Вопросы для самопроверки
Дайте определение первообразной функции.
Укажите геометрический смысл совокупности первообразных функций. Что называется неопределенным интегралом?
Напишите таблицу основных интегралов.
Докажите простейшие свойства неопределенного интеграла.
Найдите ∫(2х—l)2dx двумя способами: а) непосредственно как интеграл от степенной функции со сложным аргументом; б) раскрыв скобки и проинтегрировав полученную сумму. Покажите, что полученные результаты не противоречат друг другу.
Выведите формулу замены переменной в неопределенном интеграле.
Выведите формулу интегрирования по частям для неопределенного интеграла. Укажите типы интегралов, вычисление которых целесообразно производить с помощью метода интегрирования по частям.
Изложите методы интегрирования простейших рациональных дробей I, II, III и IV типов.
Сформулируйте теорему о разложении многочлена на простершие множители. Изложите правило разложения правильной рациональной дроби на простейшие дроби в случае простых действительных корней знаменателя. Приведите примеры.
Изложите правило разложения правильной рациональной дроби на простейшие дроби в случае действительных кратных корней знаменателя. Приведите примеры.
Изложите правило разложения правильной рациональной дроби на простейшие дроби для случая, когда среди корней знаменателя имеются пары простых комплексно-сопряженных корней. Приведите пример.
Изложите правило разложения правильной рациональной дроби для случая, когда среди корней знаменателя имеется пара кратных комплексно-сопряженных корней. Приведите пример.
Изложите методы нахождения интегралов вида
где p, q,..., r — рациональные числа; R— рациональная функция. Приведите пример.
Изложите метод нахождения интегралов вида ∫R(sinx, cosх)dх, где R — рациональная функция. Приведите примеры.
В чем состоит общая идея метода рационализации при интегрировании иррациональных и трансцендентных функций?
Yandex.RTB R-A-252273-3
- II. Введение в математический анализ
- III. Дифференциальное исчисление функций одной переменной
- IV. Исследование функций с помощью производных
- V. Векторные и комплексные функции действительного переменного
- VI. Неопределенный интеграл
- VII. Определенный интеграл
- VIII. Функции нескольких переменных
- IX. Обыкновенные дифференциальные уравнения
- X. Системы обыкновенных дифференциальных уравнений
- XVIII. Кратные интегралы
- XIX. Криволинейные и поверхностные интегралы
- XX. Векторный анализ
- XXI. Элементы теории уравнений математической физики
- XXII. Элементы теории функций комплексного переменного и операционное исчисление
- XXIII. Основные численные методы
- XXIV. Теория вероятностей и элементы математической статистики
- II. Введение в математический анализ.
- III. Дифференциальное исчисление функций одной переменной
- IV. Исследование функций с помощью производных
- V. Векторные и комплексные функции действительного переменного
- VI. Неопределенный интеграл
- VII. Определенный интеграл
- VIII. Функции нескольких переменных
- IX. Обыкновенные дифференциальные уравнения
- X*. Системы обыкновенных дифференциальных уравнений
- XI. Числовые ряды
- XVII. Основные уравнения математической физики
- XVIII*. Операционное исчисление
- XIX. Теория вероятностей и математическая статистика
- XX. Основные численные методы
- Тема I. Векторная алгебра
- Тема II. Поверхности и линии
- Тема III. Элементы линейной алгебры
- 1. Матрицы и линейные операции над ними
- 2. Определители
- 3. Системы линейных уравнений. Правило Крамера
- 4. Ранг матрицы. Теорема Кронекера—Капелли. Метод Гаусса
- 5. Произведение матриц
- 6. Арифметическое пространство
- 7. Линейные пространства
- 8. Евклидовы пространства
- 9. Линейные преобразования (операторы)
- 10. Квадратичные формы
- 11. Комплексные числа
- Тема IV. Введение в математический анализ
- 1. Число. Переменная. Функция
- 2. Предел и непрерывность функций
- Тема V. Производная и дифференциал
- 1. Производная
- 2. Дифференциал
- 3. Производные и дифференциалы высших порядков
- 4. Свойства дифференцируемых функций
- 5. Формула Тейлора
- Тема VI. Возрастание и убывание функции. Экстремумы
- 1. Возрастание и убывание функций
- 2. Экстремумы
- Тема VII. Построение графиков функции
- 1. Выпуклость и вогнутость графика функции Точки перегиба
- 2. Асимптоты
- 3. Общая схема построения графиков функций
- Тема VIII. Векторные и комплексные функции
- 1. Векторная функция скалярного аргумента
- 2. Кривизна кривой. Формулы Френе
- 3. Комплексные функции. Многочлен в комплексной области
- Тема IX. Приближенное решение уравнении. Интерполяция
- 1. Приближенное решение уравнений
- 2. Интерполяция
- Тема X. Функции нескольких переменных
- 7. Метод наименьших квадратов. Понятие об итерационных методах решения систем уравнений
- Тема XI. Неопределенный интеграл
- Тема XII. Определенный интеграл
- 1. Определение, свойства и вычисление определенного интеграла
- 2. Приближенное вычисление определенного интеграла
- 3. Несобственные интегралы
- 4. Интегралы, зависящие от параметра.
- 5. Геометрические приложения определенного интеграла
- Тема XIII. Обыкновенные дифференциальные уравнения
- 1. Дифференциальные уравнения первого порядка
- 2. Дифференциальные уравнения высших порядков
- 3. Линейные дифференциальные уравнения
- Тема XIV. Системы обыкновенных дифференциальных уравнении. Элементы теории устойчивости
- 1. Системы обыкновенных дифференциальных уравнений
- 2. Системы линейных дифференциальных уравнений с постоянными коэффициентами
- 3. Элементы теории устойчивости
- Тема XV. Кратные интегралы
- 1. Двойной интеграл
- 2. Тройной интеграл
- Тема XVI. Криволинейные и поверхностные интегралы
- 1. Криволинейные интегралы; их определение, свойства и приложения
- 2. Формула Грина.
- 3. Поверхностные интегралы
- Тема XVII. Векторный анализ
- 1. Скалярное и векторное поле. Градиент скалярного поля. Циркуляция, поток, дивергенция и ротор векторного поля
- 2. Формула Стокса
- 3. Формула Остроградского
- 4. Потенциальные и соленоидальные векторные поля
- 5. Операторы Гамильтона и Лапласа
- Тема XVIII. Ряды
- 1. Числовые ряды
- 2. Функциональные ряды
- 3. Степенные ряды
- 4. Приложения степенных рядов к приближенным вычислениям
- Тема XIX. Ряды фурье. Интеграл фурье
- Тема XX. Элементы теории уравнений математической физики
- Тема XXI. Элементы теории функции комплексного переменного
- Тема XXII. Операционное исчисление
- Тема XXIII. Теория вероятностей
- 1. Случайные события
- 2. Случайные величины
- 3. Цепи Маркова
- Тема XXIV. Элементы математической статистики
- 1. Элементы векторной алгебры и аналитической геометрии
- 2. Элементы линейной алгебры
- 3. Введение в математический анализ
- 4. Производная и её приложения
- 5. Приложения дифференциального исчисления
- 6. Дифференциальное исчисление функций нескольких переменных
- 7. Неопределенный и определенный интегралы
- 8. Дифференциальные уравнения
- 9. Кратные, криволинейные и поверхностные интегралы.
- 10. Ряды
- 11. Уравнения математической физики.
- 12. Теория вероятности и математическая статистика.