logo
math

5. Произведение матриц

Литература. [1], гл. V, § 6; [4], т. 2, гл. XXI, § 4, 6—9, упр. 3—10; [9], ч. I, гл. IV, § 2, задачи 39G, 402, 406, 407:

Вопросы для самопроверки

1. Что называется матрицей? Как определяются линейные операции над матрицами и каковы их свойства? Приведите примеры.

2. Что называется определителем? Каковы основные свойства определителей?

3. Что называется минором и алгебраическим дополнением? Приведите примеры.

4. Каковы способы вычисления определителей? Приведите примеры.

5. Что называется матрицей и расширенной матрицей системы линейных уравнений? Приведите примеры.

6. Что называется решением системы линейных уравнений? Какие системы называются совместными, а какие — несовместными?

7. Сформулируйте теорему Кронекера—Капелли.

8. Напишите формулы Крамера. В каком случае они применимы?

9. При каком условии система линейных уравнений имеет единственное решение?

10. Что можно сказать о системе линейных уравнений, если ее определитель равен нулю?

11. При каком условии однородная система п линейных уравнений с п неизвестными имеет ненулевое решение?

12. Опишите метод Гаусса решения и исследования систем линейных уравнений.

13. Какие разновидности метода Гаусса вы знаете?

14. Что называется рангом системы линейных уравнений? Как, используя метод Гаусса, можно найти ранг системы линейных уравнений?

15. Какие неизвестные в системе линейных уравнений и в каком случае называют свободными, а какие базисными? Что называется общим решением системы линейных уравнений?

16. Что называется рангом матрицы? Как его можно найти?

17. Что называется произведением двух матриц? Каковы свойства произведения матриц?

18. Какая матрица называется единичной?

19. Какая матрица называется обратной для данной матрицы? Всегда ли существует обратная матрица? Как можно найти обратную матрицу?

20. В чем состоит матричный способ решения систем линейных уравнений?

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4