Тема XXIV. Элементы математической статистики
Литература. [8], гл. 9, § 1—8, задачи 1, 7—10 18, 20; [4], гл. XX, § 27—30, упр. 34-38; [9], ч. II, гл. V, § 16, задача 891; [8], гл. 10, § 1—5, задачи 1—3, 8.
Оценки, которые определяются одним числом, называют точечными. Например, выборочная (статистическая) средняя и выборочная (статистическая) дисперсия — точечные оценки. При малом числе наблюдений эти оценки могут приводить к грубым ошибкам. Чтобы избежать этих ошибок, используют интервальные оценки, которые определяются двумя числами — концами интервала (в котором заключена оцениваемая величина с заданной вероятностью). Таким образом, задача сводится к отысканию такого интервала (его называют доверительным), который с заданной вероятностью (ее называют надежностью) покрывает оцениваемый параметр. Наиболее часто надежность принимают равной 0,155 или 0,99, или 0,999.
В частности, при надежности γ=0,95 доверительный интервал для оценки математического ожидания а нормального распределения (по выборочной средней выборки объемаn, при известном σ) находят по формуле
В обозначениях [4] (гл. XX, § 29) формула принимает вид
Если доверительный интервал найден, то с надежностью 0,95 Можно считать, что оцениваемый параметр заключен в этом интервале.
Пример 1. Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежность» 0,95, зная выборочную среднюю =10,43 (статистическую среднююm*x), объем выборки (число наблюдений) n=100 и среднее квадратическое отклонение σ=5.
Решение. Воспользуемся формулой
Подставляя данные, получаем
10,43 — 1,96- (5/10) < а < 10,43 + 1,96- (5/10),
или окончательно 9,45<а< 11,41.
Вопросы для самопроверки
Что называется выборкой? Напишите формулу для вычисления выборочной средней.
Какие оценки называются точечными? Дайте определения несмещенной и состоятельной оценок.
Какие оценки являются интервальными? В каких случаях следует использовать интервальную оценку?
Для чего служит метод наибольшего правдоподобия? Как им пользоваться для дискретных и непрерывных случайных величин?
Как найти доверительные интервалы для оценки, математического ожидания нормального распределения?
Дайте определение статистической гипотезы, приведите примеры статистической проверки гипотез.
Дайте определение случайного процесса. Что называется реализацией (или траекторией) случайного процесса? Какой процесс называется процессом с независимыми приращениями? Изложите сущность пуассоновского процесса.
После изучения тем XXIII и XXIV выполните контрольную работу 12.
ЗАДАЧИ ДЛЯ КОНТРОЛЬНЫХ ЗАДАНИЙ
Yandex.RTB R-A-252273-3
- II. Введение в математический анализ
- III. Дифференциальное исчисление функций одной переменной
- IV. Исследование функций с помощью производных
- V. Векторные и комплексные функции действительного переменного
- VI. Неопределенный интеграл
- VII. Определенный интеграл
- VIII. Функции нескольких переменных
- IX. Обыкновенные дифференциальные уравнения
- X. Системы обыкновенных дифференциальных уравнений
- XVIII. Кратные интегралы
- XIX. Криволинейные и поверхностные интегралы
- XX. Векторный анализ
- XXI. Элементы теории уравнений математической физики
- XXII. Элементы теории функций комплексного переменного и операционное исчисление
- XXIII. Основные численные методы
- XXIV. Теория вероятностей и элементы математической статистики
- II. Введение в математический анализ.
- III. Дифференциальное исчисление функций одной переменной
- IV. Исследование функций с помощью производных
- V. Векторные и комплексные функции действительного переменного
- VI. Неопределенный интеграл
- VII. Определенный интеграл
- VIII. Функции нескольких переменных
- IX. Обыкновенные дифференциальные уравнения
- X*. Системы обыкновенных дифференциальных уравнений
- XI. Числовые ряды
- XVII. Основные уравнения математической физики
- XVIII*. Операционное исчисление
- XIX. Теория вероятностей и математическая статистика
- XX. Основные численные методы
- Тема I. Векторная алгебра
- Тема II. Поверхности и линии
- Тема III. Элементы линейной алгебры
- 1. Матрицы и линейные операции над ними
- 2. Определители
- 3. Системы линейных уравнений. Правило Крамера
- 4. Ранг матрицы. Теорема Кронекера—Капелли. Метод Гаусса
- 5. Произведение матриц
- 6. Арифметическое пространство
- 7. Линейные пространства
- 8. Евклидовы пространства
- 9. Линейные преобразования (операторы)
- 10. Квадратичные формы
- 11. Комплексные числа
- Тема IV. Введение в математический анализ
- 1. Число. Переменная. Функция
- 2. Предел и непрерывность функций
- Тема V. Производная и дифференциал
- 1. Производная
- 2. Дифференциал
- 3. Производные и дифференциалы высших порядков
- 4. Свойства дифференцируемых функций
- 5. Формула Тейлора
- Тема VI. Возрастание и убывание функции. Экстремумы
- 1. Возрастание и убывание функций
- 2. Экстремумы
- Тема VII. Построение графиков функции
- 1. Выпуклость и вогнутость графика функции Точки перегиба
- 2. Асимптоты
- 3. Общая схема построения графиков функций
- Тема VIII. Векторные и комплексные функции
- 1. Векторная функция скалярного аргумента
- 2. Кривизна кривой. Формулы Френе
- 3. Комплексные функции. Многочлен в комплексной области
- Тема IX. Приближенное решение уравнении. Интерполяция
- 1. Приближенное решение уравнений
- 2. Интерполяция
- Тема X. Функции нескольких переменных
- 7. Метод наименьших квадратов. Понятие об итерационных методах решения систем уравнений
- Тема XI. Неопределенный интеграл
- Тема XII. Определенный интеграл
- 1. Определение, свойства и вычисление определенного интеграла
- 2. Приближенное вычисление определенного интеграла
- 3. Несобственные интегралы
- 4. Интегралы, зависящие от параметра.
- 5. Геометрические приложения определенного интеграла
- Тема XIII. Обыкновенные дифференциальные уравнения
- 1. Дифференциальные уравнения первого порядка
- 2. Дифференциальные уравнения высших порядков
- 3. Линейные дифференциальные уравнения
- Тема XIV. Системы обыкновенных дифференциальных уравнении. Элементы теории устойчивости
- 1. Системы обыкновенных дифференциальных уравнений
- 2. Системы линейных дифференциальных уравнений с постоянными коэффициентами
- 3. Элементы теории устойчивости
- Тема XV. Кратные интегралы
- 1. Двойной интеграл
- 2. Тройной интеграл
- Тема XVI. Криволинейные и поверхностные интегралы
- 1. Криволинейные интегралы; их определение, свойства и приложения
- 2. Формула Грина.
- 3. Поверхностные интегралы
- Тема XVII. Векторный анализ
- 1. Скалярное и векторное поле. Градиент скалярного поля. Циркуляция, поток, дивергенция и ротор векторного поля
- 2. Формула Стокса
- 3. Формула Остроградского
- 4. Потенциальные и соленоидальные векторные поля
- 5. Операторы Гамильтона и Лапласа
- Тема XVIII. Ряды
- 1. Числовые ряды
- 2. Функциональные ряды
- 3. Степенные ряды
- 4. Приложения степенных рядов к приближенным вычислениям
- Тема XIX. Ряды фурье. Интеграл фурье
- Тема XX. Элементы теории уравнений математической физики
- Тема XXI. Элементы теории функции комплексного переменного
- Тема XXII. Операционное исчисление
- Тема XXIII. Теория вероятностей
- 1. Случайные события
- 2. Случайные величины
- 3. Цепи Маркова
- Тема XXIV. Элементы математической статистики
- 1. Элементы векторной алгебры и аналитической геометрии
- 2. Элементы линейной алгебры
- 3. Введение в математический анализ
- 4. Производная и её приложения
- 5. Приложения дифференциального исчисления
- 6. Дифференциальное исчисление функций нескольких переменных
- 7. Неопределенный и определенный интегралы
- 8. Дифференциальные уравнения
- 9. Кратные, криволинейные и поверхностные интегралы.
- 10. Ряды
- 11. Уравнения математической физики.
- 12. Теория вероятности и математическая статистика.