logo
math

4. Ранг матрицы. Теорема Кронекера—Капелли. Метод Гаусса

Литература. [1], гл. V, § 4, 5; [9], ч. I, задачи 435—437, 441—443, 446, 447, 449.

Материал этого пункта имеется также в [10], § 3, 4. Рекомендуется разобрать в [9], ч. I, решения задач 428—433, 438—440, 444, 445.

Эффективным методом решения и исследования систем линейных уравнений является метод исключения неизвестных, называемый также методом Гаусса. Он состоит в том, что данная система линейных уравнений преобразуется в равносильную ей систему специального вида, которая легко исследуется и решается. Применение метода Гаусса не зависит ни от числа уравнений, ни от числа неизвестных в системе.

Систему т линейных уравнений с п неизвестными х\, х2,..., хя в общем виде можно записать так:

где aijкоэффициенты, biсвободные члены.

В дальнейшем могут встретиться и такие особые уравнения, все коэффициенты которых равны нулю, т. е. уравнения вида

Если в уравнении (2) свободный член отличен от нуля, то ему не удовлетворяют никакие значения неизвестных. Система уравнений, содержащая хотя бы одно такое уравнение, несовместна. Если же в уравнении (2) свободный член равен нулю, то ему удовлетворяют любые значения неизвестных — уравнение является тождеством. Уравнение-тождество можно удалить из системы: оставшиеся уравнения образуют систему, равносильную исходной. В дальнейшем уравнения-тождества будем кратко обозначать символом 0=0

Чтобы преобразовать данную систему линейных уравнений общего вида к необходимому виду, используют следующие элементарные преобразования:

α — прибавление к обеим частям одного уравнения системы соответствующих частей другого уравнения той же системы, умноженных на некоторое число λ;

β — перестановка местами уравнений в системе;

γ — удаление из системы уравнений вида 0 = 0.

В результате каждого из элементарных преобразований, а значит, и в результате их последовательного повторения данная система линейных уравнений преобразуется в систему линейных же уравнений, равносильную исходной.

С помощью элементарного преобразования а любую систему линейных уравнений можно преобразовать так, чтобы некоторое фиксированное неизвестное х1, сохранившись в одном уравнении, исключилось из любого другого уравнения системы. Для этого достаточно подобрать соответствующее значение множителя λ для каждого уравнения, из которого исключается выбранное неизвестное х1, Действительно, пусть в системе (1) неизвестное содержится в i-м уравнении. Это значит, что коэффициент aij=0. Назовем х1, ведущим неизвестным, i-е уравнение — ведущим уравнением, а коэффициент aijведущим элементом.

Преобразуем теперь κ-е уравнение (κ≠j), прибавив к нему ведущее уравнение, умноженное на некоторое число λ. Коэффициенты κ-го уравнения преобразуются по формуле

(штрихом отмечены новые значения соответствующих коэффициентов). Подберем множитель λ так, чтобы коэффициент при хj в k-м уравнении (получающийся из (3), если положить l=j) стал равным нулю:

откуда λ=-akj/aij. (4)

Используя одно и то же уравнение в качестве ведущего, можно исключить ведущее неизвестное из нескольких уравнений, для каждого из которых надо взять свое значение множителя λ, определяемое по формуле (4) при различных значениях k. Такое преобразование системы линейных уравнений будем называть исключением неизвестного xj. При исключении одного неизвестного может оказаться, что из некоторых уравнений системы исключились, и некоторые другие неизвестные и даже появились уравнения вида (2).

Преобразование системы по методу Гаусса состоит из нескольких шагов, на каждом из которых исключается одно неизвестное. Для каждого такого шага необходимо указать ведущее неизвестное и ведущее уравнение или, что равносильно, ведущий элемент, а также определить, из каких уравнений исключается ведущее неизвестное.

В качестве первого ведущего элемента (ведущего элемента первого шага) можно выбрать любой отличный от нуля коэффициент данной системы линейных уравнений. Сделав такой выбор, исключим первое ведущее неизвестное из всех уравнений системы, кроме первого ведущего уравнения. Если получится хотя бы одно уравнение вида (2) с отличным от нуля свободным членом, то исследование закончено — система несовместна. Если же все полученные уравнения вида (2) окажутся уравнениями-тождествами, то их из системы удаляют. Первый шаг закончен.

Совокупность уравнений системы, кроме первого ведущего, назовем первой подсистемой. Первое ведущее уравнение дальнейшим преобразованиям подвергать не будем. Преобразуем только первую подсистему.

В качестве второго ведущего элемента (ведущего элемента второго шага) можно выбрать любой отличный от нуля коэффициент в первой подсистеме. Произведя такой выбор, исключим второе ведущее неизвестное из всех уравнений первой подсистемы, кроме второго ведущего уравнения. Если получится хотя бы одно уравнение вида (2) с отличным от нуля свободным членом, то исследование закончено — система несовместна. Если же все полученные уравнения вида (2) окажутся уравнениями-тождествами, то их из системы удаляют. Второй шаг закончен.

Совокупность уравнений системы, кроме первого и второго ведущих, назовем второй подсистемой. Второе ведущее уравнение, как и первое, дальнейшим преобразованиям подвергать не будем. Преобразуем только вторую подсистему.

В качестве третьего ведущего элемента (ведущего элемента третьего шага) можно выбрать любой отличный от нуля коэффициент во второй подсистеме и т. д.

Если в процессе таких преобразований не получатся уравнения вида (2) с отличным от нуля свободным членом, то данная система совместна. Процесс ее преобразования заканчивают тогда, когда на очередном шаге получена подсистема, состоящая только из одного уравнения, или подсистемы вообще не будет.

На каждом шаге преобразования системы линейных уравнений методом Гаусса имеется большая свобода в выборе ведущего элемента (он только не может быть равен нулю). Но как бы эти элементы ни выбирались, число уравнений в окончательно полученной системе будет одно и то же: оно равно максимальному числу независимых уравнений в исходной системе. Это число, являющееся очень важной характеристикой системы, называется рангом системы линейных уравнений. Если m — число уравнений в данной системе, r — ее ранг, а n — число неизвестных, то, очевидно, rm и rn.

Если ведущие элементы выбирать так, чтобы ведущими неизвестными стали последовательно первые по порядку номеров неизвестные х1, х2 ..., то в результате система принимает вид

или, в частности, при r=n

В случае r=n система имеет единственное решение, которое легко найти; из последнего уравнения системы (6) находим значение неизвестного хn; подставив это значение в предпоследнее уравнение, найдем значение xn-1 и т. д. до получения из первого уравнения значения x1.

Если же r<n, то аналогично из системы (5) можно найти выражения неизвестных x1, x2,..., хr через неизвестные xr+1, xr+1,..., хn:

Придавая неизвестным xr+1,...,xn произвольные значения и вычисляя затем по формулам (7) значения неизвестных x1, х2,.,., хr, каждый раз будем получать решение системы (5), а значит, и решение исходной системы. Наоборот, любое решение системы может быть получено по формулам (7) при соответствующих значениях неизвестных xr+1,...,xn. Поэтому выражение (7) называют общим решением системы. Любое решение с конкретными числовыми значениями неизвестных называют частным решением системы. В этом случае система имеет бесчисленное множество решений. Неизвестные xr+1,...,xn называют свободными, а неизвестные x1, х2,.,., хrбазисными. Число базисных неизвестных равно рангу системы r, а число свободных неизвестных s=n—r.

Приведение данной системы линейных уравнений к виду (5) или (6) называют прямым ходом, а отыскание решения системы (5) или (6) (общего или единственного) — обратным ходом метода Гаусса. Для обратного хода можно снова применить описанную выше схему исключения неизвестных.

Рассмотрим применение метода Гаусса на конкретных примерах.

Пример 1. Решить систему линейных уравнений

Решение. За первое ведущее уравнение примем первое уравнение системы, а за первое ведущее неизвестное x1 первый ведущий элемент есть а11 = 2. Исключим x1 из второго и третьего уравнений, прибавив ко второму уравнению ведущее, умноженное на — 3/2, а к третьему — ведущее, умноженное на — 5/2. Имеем

Первый шаг закончен. Второе и третье уравнения образуют первую подсистему. За второе ведущее уравнение примем второе уравнение системы, а за второе ведущее неизвестное x2; второй ведущий элемент есть 7/2. Исключив x2 из третьего уравнения, получаем

Второй шаг закончен. Вторая подсистема состоит из одного третьего уравнения. Прямой ход метода Гаусса закончен — система приведена к виду (6). В результате обратного хода получаем

Итак, решение данной системы таково: x1=-4, x2=3, x3=-1 данном случае r=n=3, решение единственное.

Пример 2. Решить систему линейных уравнений

Решение. Преобразуем систему методом Гаусса

Уравнение 0=-26 не имеет решений, следовательно, данная система несовместна.

Замечание. Несовместность данной системы очевидна уже после первого шага: в полученной системе левые части второго и третьего уравнений отличаются только знаком, тогда как правые части одинаковы по знаку и различны по модулю.

Пример 3. Решить систему линейных уравнений

Решение. Преобразуем систему методом Гаусса:

После второго шага из трех уравнений осталось два, так как третье уравнение приняло вид 0=0 и удалено из системы. В данном случае ранг системы r = 2, а число неизвестных n = 3, т. е. r<n. Из трех уравнений первоначально данной системы только два независимы (m = 3, r<m). В первой подсистеме два уравнения, вторая подсистема отсутствует. Система приведена к виду (5). Прямой ход метода Гаусса закончен. Исключая теперь с помощью второго уравнения х2 из первого уравнения, приведем систему к виду

откуда легко находим общее решение: x1 = 19/3+x3, х2=-14/15+(2/5)x3 Неизвестные х1, x2 - базисные, х3 — свободное. Придавая неизвестному x3 произвольные числовые значения, можно получить множество частных решений: x1 = 19/3, x2=-14/15, x3=0; x1=22/3, x2=-8/15, x3=1 и т. д.

К элементарным преобразованиям системы линейных уравнений часто присоединяют еще одно преобразование: δ - умножение обеих частей уравнения системы на некоторое число μ≠0.

Очевидно, система, полученная в результате преобразования δ из данной системы, равносильна последней. Требование (μ≠0) существенно, так как после умножения обеих частей уравнения на нуль получим уравнение-тождество 0=0, что может привести к системе, неравносильной исходной.

Преобразованием δ можно добиться, чтобы коэффициенты при базисных переменных в системе (5) или (6) стали равными единице. Действительно, в (5) и (6) коэффициенты при базисных переменных x1, x2,..., xr, очевидно, отличны от нуля (cij≠0). Умножая уравнения в этих системах соответственно на μ1 = 1/сij (с,, ij≠0; i=1, 2, ..., r), получаем в качестве коэффициентов при x1, x2,..., xr, единицы.

Преобразование δ можно применять и в промежуточных преобразованиях системы, добиваясь упрощения хода решения задачи. Так, например, в примере 1 можно было последовательно преобразовывать данную систему в следующие системы:

Кроме описанной схемы метода Гаусса существуют разновидности этого метода. Одной из них является метод полного исключения (или метод Жордана-Гаусса): исключение ведущего неизвестного производится не только из уравнений очередной подсистемы, но и из ведущих уравнений предыдущих шагов.

Рассмотрим преобразование, основанное на методе полного исключения системы линейных уравнений, приведенной в примере 1 (попутно будем применять и преобразование δ):

После третьего шага получена система, равносильная данной, которую вместе с тем можно рассматривать и как запись ее решения.

Еще одной разновидностью метода Гаусса является метод главных элементов Гаусса. При этом на каждом шаге в качестве ведущего выбирают наибольший по модулю коэффициент в подсистеме; его называют главным элементом. Указанный метод применяют в том случае, когда систему решают приближенно. Выбор главного элемента, в качестве ведущего, обеспечивает уменьшение вычислительной погрешности.

При преобразованиях системы линейных уравнений методом Гаусса преобразуются коэффициенты системы, поэтому этот метод можно применить не к самой системе уравнений, а к ее расширенной матрице. Элементарным преобразованиям системы линейных уравнений соответствуют аналогичные элементарные преобразования матрицы (применительно к строкам) [см. [1], гл V, § 4, п. 1, предложение 2]. Уравнению-тождеству 0 = 0 соответствует строка матрицы, состоящая из одних нулей, а противоречивому уравнению 0=b - строка матрицы, последний элемент которой не равен нулю (b≠0), а все остальные элементы — нули.

Выше рангом системы линейных уравнений было названо максимальное число независимых уравнений в системе. Теперь, по аналогии, можно сказать, что рангом матрицы является максимальное число ее линейно независимых строк.

Часто рангом матрицы называют наивысший порядок ее минора, отличного от нуля (см. [1], гл V, §4), а рангом системы линейных уравнений - ранг ее матрицы. Все эти определения понятия ранга (системы линейных уравнений, матрицы) эквивалентны. При элементарных преобразованиях матрицы ее ранг не меняется, поэтому для отыскания ранга матрицы можно привести ее с помощью элементарных преобразований к упрощенному виду, позволяющему сразу установить ее ранг (см. [1], гл. V, § 4, п. 2). Это преобразование матрицы также производят по схеме метода Гаусса. Таким образом, схема метода Гаусса применяется не только для решения и исследования систем линейных уравнений. Здесь мы отметили применение ее к решению задачи о ранге матрицы, позже познакомимся и с другими ее применениями (например, для отыскания обратной матрицы — см. [1], гл. V, § 6).

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4