4. Приложения степенных рядов к приближенным вычислениям
Литература. [4], гл. XVI, § 17, 20—22, 26, 27 (замечание 2), упр. 85, 87, 89, 90, 97, 102, 103, 106, 113, 116, 117, 119, 123, 125, 127, 129—132; [11] гл.9, § 9.14.
Ряды часто используют для приближенного вычисления значений функции, интегралов и решения дифференциальных уравнений. Следует обратить внимание на замечание 3 § 7 гл. XVI пособия [4], в котором показано, как оценить погрешность, получающуюся при замене суммы знакочередующегося ряда его частичной суммой (при этом предполагается, что знакочередующийся ряд удовлетворяет условиям теоремы Лейбница); это замечание используется в § 17 и 21. В § 22 гл. XVI следует отметить два метода отыскания частного решения дифференциального уравнения по заданным начальным условиям в виде ряда Тейлора: последовательного дифференцирования и неопределенных коэффициентов. Сумму конечного числа членов этого ряда можно принять за приближенное решение дифференциального уравнения. Такой метод приближенного решения дифференциального уравнения может оказаться малоудобным, если трудно оценить точность вычислений или если требуется отыскивать слишком большое число членов ряда. В этом случае, а также в часто встречающихся на практике случаях, когда требуется найти числовые значения неизвестной функции, определяемой дифференциальным уравнением, только для нескольких определенных значений независимой переменной, применяют численные методы интегрирования дифференциальных уравнений, некоторые из которых были рассмотрены ранее (методы Эйлера и Рунге—Кутта, тема XIII).
Вопросы для самопроверки
Дайте определение области сходимости функционального ряда. Приведите примеры рядов с различными областями сходимости.
Дайте определение понятия равномерной сходимости последовательности функций. Какой ряд называется равномерно сходящимся?
Сформулируйте признак Вейерштрасса абсолютной и равномерной сходимости ряда.
Сформулируйте основные свойства равномерно сходящихся рядов.
Докажите теорему Абеля о сходимости степенных рядов.
Выведите формулу для вычисления радиуса круга сходимости степенного ряда
Выведите условия разложимости функции в ряд Тейлора.
Разложите функцию y=sinx в степенной ряд и докажите с помощью остаточного члена сходимость полученного ряда к данной функции.
Разложите функцию у=еx в степенной ряд и докажите с помощью остаточного члена сходимость полученного ряда к данной функции.
Разложите функцию у=(1+х) в степенной ряд и найдите промежуток сходимости полученного ряда.
Сформулируйте теорему об интегрировании степенных рядов и с ее помощью получите разложение в ряд функции y=arctgx.
Сформулируйте теорему об интегрировании степенных рядов и с ее помощью получите разложение в ряд функции у=ln(1+х).
Сформулируйте теорему о дифференцировании степенных рядов и с ее помощью получите разложение в ряд функции y=cosx.
Выведите формулу Эйлера eiy=cos y+i sin у, исходя из разложения в степенной ряд функции eiy.
Приведите пример оценки точности вычисления суммы знакочередующегося ряда.
Приведите пример применения остаточного члена формулы Тейлора (в форме Лагранжа) к оценке точности вычисления с помощью степенного ряда.
Изложите метод приближенного вычисления определенных интегралов с помощью рядов. Приведите примеры.
Изложите метод приближенного интегрирования дифференциальных уравнений с помощью степенных рядов. Приведите пример.
- II. Введение в математический анализ
- III. Дифференциальное исчисление функций одной переменной
- IV. Исследование функций с помощью производных
- V. Векторные и комплексные функции действительного переменного
- VI. Неопределенный интеграл
- VII. Определенный интеграл
- VIII. Функции нескольких переменных
- IX. Обыкновенные дифференциальные уравнения
- X. Системы обыкновенных дифференциальных уравнений
- XVIII. Кратные интегралы
- XIX. Криволинейные и поверхностные интегралы
- XX. Векторный анализ
- XXI. Элементы теории уравнений математической физики
- XXII. Элементы теории функций комплексного переменного и операционное исчисление
- XXIII. Основные численные методы
- XXIV. Теория вероятностей и элементы математической статистики
- II. Введение в математический анализ.
- III. Дифференциальное исчисление функций одной переменной
- IV. Исследование функций с помощью производных
- V. Векторные и комплексные функции действительного переменного
- VI. Неопределенный интеграл
- VII. Определенный интеграл
- VIII. Функции нескольких переменных
- IX. Обыкновенные дифференциальные уравнения
- X*. Системы обыкновенных дифференциальных уравнений
- XI. Числовые ряды
- XVII. Основные уравнения математической физики
- XVIII*. Операционное исчисление
- XIX. Теория вероятностей и математическая статистика
- XX. Основные численные методы
- Тема I. Векторная алгебра
- Тема II. Поверхности и линии
- Тема III. Элементы линейной алгебры
- 1. Матрицы и линейные операции над ними
- 2. Определители
- 3. Системы линейных уравнений. Правило Крамера
- 4. Ранг матрицы. Теорема Кронекера—Капелли. Метод Гаусса
- 5. Произведение матриц
- 6. Арифметическое пространство
- 7. Линейные пространства
- 8. Евклидовы пространства
- 9. Линейные преобразования (операторы)
- 10. Квадратичные формы
- 11. Комплексные числа
- Тема IV. Введение в математический анализ
- 1. Число. Переменная. Функция
- 2. Предел и непрерывность функций
- Тема V. Производная и дифференциал
- 1. Производная
- 2. Дифференциал
- 3. Производные и дифференциалы высших порядков
- 4. Свойства дифференцируемых функций
- 5. Формула Тейлора
- Тема VI. Возрастание и убывание функции. Экстремумы
- 1. Возрастание и убывание функций
- 2. Экстремумы
- Тема VII. Построение графиков функции
- 1. Выпуклость и вогнутость графика функции Точки перегиба
- 2. Асимптоты
- 3. Общая схема построения графиков функций
- Тема VIII. Векторные и комплексные функции
- 1. Векторная функция скалярного аргумента
- 2. Кривизна кривой. Формулы Френе
- 3. Комплексные функции. Многочлен в комплексной области
- Тема IX. Приближенное решение уравнении. Интерполяция
- 1. Приближенное решение уравнений
- 2. Интерполяция
- Тема X. Функции нескольких переменных
- 7. Метод наименьших квадратов. Понятие об итерационных методах решения систем уравнений
- Тема XI. Неопределенный интеграл
- Тема XII. Определенный интеграл
- 1. Определение, свойства и вычисление определенного интеграла
- 2. Приближенное вычисление определенного интеграла
- 3. Несобственные интегралы
- 4. Интегралы, зависящие от параметра.
- 5. Геометрические приложения определенного интеграла
- Тема XIII. Обыкновенные дифференциальные уравнения
- 1. Дифференциальные уравнения первого порядка
- 2. Дифференциальные уравнения высших порядков
- 3. Линейные дифференциальные уравнения
- Тема XIV. Системы обыкновенных дифференциальных уравнении. Элементы теории устойчивости
- 1. Системы обыкновенных дифференциальных уравнений
- 2. Системы линейных дифференциальных уравнений с постоянными коэффициентами
- 3. Элементы теории устойчивости
- Тема XV. Кратные интегралы
- 1. Двойной интеграл
- 2. Тройной интеграл
- Тема XVI. Криволинейные и поверхностные интегралы
- 1. Криволинейные интегралы; их определение, свойства и приложения
- 2. Формула Грина.
- 3. Поверхностные интегралы
- Тема XVII. Векторный анализ
- 1. Скалярное и векторное поле. Градиент скалярного поля. Циркуляция, поток, дивергенция и ротор векторного поля
- 2. Формула Стокса
- 3. Формула Остроградского
- 4. Потенциальные и соленоидальные векторные поля
- 5. Операторы Гамильтона и Лапласа
- Тема XVIII. Ряды
- 1. Числовые ряды
- 2. Функциональные ряды
- 3. Степенные ряды
- 4. Приложения степенных рядов к приближенным вычислениям
- Тема XIX. Ряды фурье. Интеграл фурье
- Тема XX. Элементы теории уравнений математической физики
- Тема XXI. Элементы теории функции комплексного переменного
- Тема XXII. Операционное исчисление
- Тема XXIII. Теория вероятностей
- 1. Случайные события
- 2. Случайные величины
- 3. Цепи Маркова
- Тема XXIV. Элементы математической статистики
- 1. Элементы векторной алгебры и аналитической геометрии
- 2. Элементы линейной алгебры
- 3. Введение в математический анализ
- 4. Производная и её приложения
- 5. Приложения дифференциального исчисления
- 6. Дифференциальное исчисление функций нескольких переменных
- 7. Неопределенный и определенный интегралы
- 8. Дифференциальные уравнения
- 9. Кратные, криволинейные и поверхностные интегралы.
- 10. Ряды
- 11. Уравнения математической физики.
- 12. Теория вероятности и математическая статистика.