5.3.1. Метод простой итерации
Многие итерационные методы могут быть сведены к процессу простой итерации. При этом исходное уравнение тем или иным способом должно быть сведено к уравнению
(5.3.1.1)
Здесь - неизвестный вектор, - заданный вектор правой части, - заданная матрица коэффициентов (оператор). Например, если задана СЛАУ (5.1), то непосредственно принимая
, (5.3.1.2)
где - единичная матрица, приходим к (5.3.1.1).
Процесс простой итерации строится следующим образом:
, (5.3.1.3)
В качестве начального приближения можно принять .
Заметим, что переход от (5.1) к (5.3.1.1) может быть выполнен не единственным способом, что приводит к различным модификациям метода простой итерации. Так, метод (5.3.1.3) с преобразованием (5.3.1.2) известен в литературе как метод Ричардсона. Другие методы простой итерации будут рассмотрены в разделе 5.3.2.
Процесс простой итерации может быть эквивалентно записан также в виде ряда по степеням оператора , т.е., в виде, так называемого, ряда Неймана
(5.3.1.4)
Если матрица постоянна (не зависит от номера итерации ), то такой итерационный процесс называется стационарным.
Пусть - «гипотетическое» точное решение, строго удовлетворяющее , а - ошибка на -м шаге. Подставляя в формулу простой итерации получаем для соотношения ошибок на и -м шаге . Для нормы ошибки: .
Отсюда следует достаточное условие сходимости процесса простой итерации: .
Действительно, тогда
Оператор с называется сжимающим, а процесс (5.3.1.2), (5.3.1.3) для него сходящимся, т.к. ошибка убывает с каждым шагом, независимо от её начальной величины.
Спектральным радиусом матрицы (конечномерного оператора) называется , где - собственные числа оператора (см. 5.4).
Для любой нормы справедливо соотношение
Доказывается, что необходимым и достаточным условием сходимости процесса простой итерации (5.3.1.3) является
< 1, (5.3.1.5)
при этом итерации сходятся не хуже геометрической прогрессии со знаменателем .
Условие (5.3.1.5) является, как правило, сильным ограничением при непосредственном применении метода (5.3.1.2), (5.3.1.3) к заданной СЛАУ. Выбор нового оператора с другим спектром при эквивалентности исходной системе (5.1) может значительно расширить область сходимости процесса простой итерации с его участием:
, (5.3.1.6)
В качестве условия выхода из вычислительного процесса по достижении заданной точности решения , аналогично (3.5.1), можно принять: , где спектральный радиус или какая-либо оценка другой нормы .
- Численные методы,
- Введение
- 1. Абсолютная и относительная погрешности.
- 1.1. Число верных знаков приближенного числа
- 1.2. Погрешность функций
- 1.3. Погрешность простейших функций двух переменных
- 1.4. Примеры и задания
- 2. Приближение функций
- 2.1. Интерполяционные полиномы
- 2.2. Интерполяционный полином Лагранжа
- 2.3. Интерполяционный полином Ньютона
- 2.3. Примеры и задания для практических занятий
- Второй интерполяционный полином Ньютона:
- 3. Численные методы решений трансцендентных и алгебраических уравнений
- 3.1. Метод простой итерации для решения нелинейных и трансцендентных уравнений
- 3.2. Метод хорд и секущих
- 3.3. Метод касательных
- Скорость сходимости итерационных методов
- Условие выхода из вычислительного процесса по заданной точности в методах простой итерации
- Пример и задание для практических занятий
- 4. Численное интегрирование
- 4.1. Метод Ньютона – Котеса
- 4.2. Метод прямоугольников.
- 4.3. Метод трапеций
- 4.4. Метод парабол. (Метод Симпсона)
- 4.5. Квадратурные формулы Гаусса
- 4.6. Задание для практических занятий
- Численные методы линейной алгебры
- 5.1. Численное решение слау
- 5.2. Прямые методы решения слау
- 5.2.1. Метод Гаусса (Метод исключений)
- 5.2.2. Вычислительная схема метода Гаусса
- 5.2.3. Ортогонализация матриц
- 5.2.4. Решение системы уравнений методом ортогонализации
- 5.3. Итерационные методы решения слау
- 5.3.1. Метод простой итерации
- 5.3.2. Метод Якоби и метод Зейделя
- 5.3.3. Метод оптимального спектрального параметра (осп) для простой итерации
- 5.4. Нахождение собственных векторов и собственных значений матриц
- 5.5. Примеры и задания к теме
- 5.5.1. Прямые методы решения слау
- 5.5.2. Итерационные методы решения слау
- 5.5.3. Нахождение собственных значений и векторов
- 6. Численные методы решения обыкновенных дифференциальных уравнений
- 6.1. Метод разложения в ряд Тейлора
- 6.2. Общая схема метода Рунге - Кутта
- 6.3 Методы Рунге-Кутта низших порядков
- 6.3.1 Метод Эйлера
- 6.3.2. Метод трапеций и прямоугольника
- 6.4. Методы Рунге-Кутта высших порядков
- 6.5. Задание к теме и пример решения оду
- Численное решение начально-краевых задач для дифференциальных уравнений в частных производных
- Конечные разности.
- Гиперболические уравнения
- Параболические уравнения
- Уравнения эллиптического типа
- 7.4.1. Разностная схема уравнений
- Лабораторные задания к теме «Численное решение уравнений в частных производных»
- 7.5.1. Гиперболические уравнения
- 7.5.2. Параболические уравнения
- 7.5.3. Эллиптические уравнения
- Литература
- Содержание