logo search
POS-KSC

4. Численное интегрирование

Цель – приближенно вычислить определенный интеграл: на [a,b].

По теореме Ньютона – Лейбница он равен разности верхнего и нижнего пределов первообразной () функции. Но для табличных функций их первообразная не существует и даже для известных не всегда представима в виде комбинаций элементарных функций. Интеграл геометрически равен площади криволинейной трапеции.

В численных методах интеграл ищется в виде квадратуры: . Необходимо найти оптимальным образом и . Обычно коэффициенты подбираются так, чтобы квадратура давала точное значение для полинома максимально возможной степени.