logo search
math

2. Формула Грина.

Условные независимости криволинейного

интеграла от пути интегрирования

Литература. [4], гл. XV, § 3, 4; [5], гл. VII, § 9, задачи 2318 (а, б, г), 2322 (а, б), 2328, 2329; [9], ч. II, гл. II, § 2, 3. Криволинейный интеграл

зависит, вообще говоря, не только от подынтегрального выражения, начальной и конечной точек пути интегрирования, но и от самого пути интегрирования. Однако для большого и важного класса подынтегральных выражений криволинейный интеграл (1) оказывается независящим от пути интегрирования или, что равносильно, интеграл (1), взятый по любому замкнутому контуру L, лежащему в рассматриваемой области D, оказывается равным нулю.

Пусть функции Х(х, у), Y(x, у) вместе со своими частными производными инепрерывны в и. Тогда для того чтобы криволинейный интеграл (1) по любому замкнутому контуруL, лежащему в D, был равен нулю, необходимо и достаточно выполнения равенства =во всех точках областиD. В этом случае выражение Xdx+Ydy является в области D полным дифференциалом некоторой функции U(x, у), т. е. Xdx+Ydy=dU. Здесь существенно, что рассматриваемая область D является односвязной (односвязной называется такая область, для которой любой расположенный в ней замкнутый контур можно путем непрерывной деформации стянуть в точку, не выходя за пределы области). Если область D не является односвязной, то выполнение в ней всех остальных указанных выше условий не влечет за собой равенство нулю криволинейного интеграла (1) по любому замкнутому контуру L в D.

Пример. Пусть область D представляет собой кольцо, заключенное между окружностями с радиусамиR и r и центром в начале координат О, a L — окружность с тем же центром и радиусом a(r<a<R) (рис. 3). Окружность L, очевидно, принадлежит области D; ее можно задать в параметрической форме уравнениями x=acost, y=asint, причем если обходить эту окружность в положительном направлении (против часовой стрелки), то параметр возрастает от 0 до 2π. Тогда

Криволинейный интеграл по замкнутому контуру L оказался не равным нулю, хотя функции и их частные производныеинепрерывны и=во всей областиD (проверьте!). Здесь дело в том, что область D неодносвязна (окружность L не может быть непрерывной деформацией стянута в точку, если не выходить за пределы кольца).

Если вместо кольца рассматривать круг радиуса R, то эта область окажется односвязной; в этом случае функции X, Y и их частные производные не являются непрерывными в этой области (непрерывность нарушается в точке О).