5.3.3. Равномерный и нормальный законы распределения непрерывных случайных величин
На практике приходится при решении задач сталкиваться с различными распределениями непрерывных случайных величин. Плотность распределения f(x) непрерывной случайной величины называют законом распределения.
Следует рассмотреть некоторые важные для практики распределения случайных величин и соответствующие им числовые характеристики.
Равномерный закон распределения вероятностей
Непрерывная случайная величина Xназывается распределенной равномерно на отрезке [a,b], если её плотность распределения вероятностей постоянна на данном отрезке:
| . | (5.14) |
Функция распределения в этом случае согласно (5.7), примет вид:
| . | (5.15) |
Числовые характеристики случайной величины Xравномерно распределенной на интервале [a,b]:
1. Математическое ожидание по формуле (5.11):
.
2. Дисперсия по формуле (5.13):
.
3. Среднее квадратическое отклонение – (Х) по формуле (5.2):
Пример 4.
Найти дисперсию и среднее квадратическое отклонение случайной величины X, равномерно распределенной на интервале (2;6).
Решение.
Математическое ожидание:
.
Дисперсия:
.
Среднее квадратическое отклонение:
Это распределение реализуется, например, в экспериментах, в которых наудачу ставится точка на интервале [a,b], при этом случайная величина X – абсцисса поставленной точки.
Вероятность попадания равномерно распределенной непрерывной случайной величины Х на интервале [a,b], определяется по формуле (5.9а).
Примером равномерно распределенной непрерывной случайной величины Х является ошибка при округлении отсчета до ближайшего целого деления шкалы измерительного прибора, проградуированной в некоторых единицах.
Пример 5.
Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляют до ближайшего деления. Найти вероятность того, что ошибка отсчета: а) превысит значение 0,04; б) меньше 0,04.
Решение.
Ошибку округления отсчета можно рассматривать как случайную величину Х, которая распределена равномерно в интервале между двумя соседними делениями. Плотность равномерного распределения по формуле (5.14) равна:
,
где (b – a) – длина интервала, в котором заключены возможные значения Х.
Вне этого интервала f (x) = 0. В рассматриваемой задаче длина интервала, в котором заключены возможные значения Х, равна 0,2. Поэтому плотность распределения вероятностей равна:
.
Тогда ошибка отсчета превысит значение 0,04, если она будет заключена в интервале (0,04; 0,2). По формуле (5.9а) вычисляется вероятность того, что при отсчете будет сделана ошибка превышающая значение 0,04:
.
Ошибка отсчета меньше 0,04 будет заключена в интервале (0; 0,04) с вероятностью:
.
На рис. 5.3 представлен график функции р(х) случайной величины, равномерно распределенной на промежутке [a;b].
Рис. 5.3. Плотность распределения вероятностей случайной величины, равномерно распределённой на отрезке [a;b]
Нормальный закон распределения вероятностей
Непрерывная случайная величина имеет нормальльное распределение с параметрами: m, > 0, если плотность распределения вероятностей имеет вид:
| (5.16) |
где: m – математическое ожидание, – среднеквадратическое отклонение.
Нормальное распределение называют еще гауссовским по имени немецкого математика Гаусса [1777-1855]. Тот факт, что случайная величина имеет нормальное распределение с параметрами: m,, обозначают так: N (m,), где:m=a=M[X];
Достаточно часто в формулах математическое ожидание обозначают через а. Если случайная величина распределена по закону N(0,1), то она называется нормированной или стандартизированной нормальной величиной. Функция распределения для нее имеет вид:
| . | (5.17) |
График плотности нормального распределения, который называют нормальной кривой или кривой Гаусса, изображен на рис.5.4.
Рис. 5.4. Плотность нормального распределения
Определение числовых характеристик случайной величины по её плотности рассматривается на примере.
Пример 6.
Непрерывная случайная величина задана плотностью распределения:.
Определить вид распределения, найти математическое ожидание M(X) и дисперсию D(X).
Решение.
Сравнивая заданную плотность распределения с (5.16) можно сделать вывод, что задан нормальный закон распределения с m =4. Следовательно, математическое ожидание M(X)=4, дисперсия D(X)=9.
Среднее квадратическое отклонение =3.
Функция Лапласа, имеющая вид:
| , | (5.17а) |
связана с функцией нормального распределения (5.17), cоотношением:
F0(x) = Ф(х) + 0,5.
Функции Лапласа нечётная.
Ф(-x)=-Ф(x).
Значения функции Лапласа Ф(х) табулированы и берутся из таблицы по значению х (см. Приложение 1).
Нормальное распределение непрерывной случайной величины играет важную роль в теории вероятностей и при описании реальности, имеет очень широкое распространение в случайных явлениях природы. На практике очень часто встречаются случайные величины, образующиеся именно в результате суммирования многих случайных слагаемых. В частности, анализ ошибок измерения показывает, что они являются суммой разного рода ошибок. Практика показывает, что распределение вероятностей ошибок измерения близко к нормальному закону.
С помощью функции Лапласа можно решать задачи вычисления вероятности попадания в заданный интервал и заданного отклонения нормальной случайной величины.
- Математика и информатика
- Содержание
- Часть 1. Основания математики Глава 1. Понятийный аппарат аксиоматического метода
- 1.1. Понятие аксиоматического метода
- 1.2. Аксиоматическое построение математической теории
- 1.3. Вопросы для самоконтроля по теме «Аксиоматический метод»
- Глава 2. Основные понятия теории множеств. Основные структуры
- 2.1. Понятие множества
- 2.2. Способы задания множеств
- 2.3. Алгебра множеств
- 2.3.1. Отношения между множествами
- 2.3.2. Операции над множествами
- 2.3.3. Алгебраические свойства операций над множествами
- 2.3.4. Геометрическая интерпретация операций над множествами
- 2.4. Декартово произведение множеств. Бинарные отношения
- 2.5. Символический язык логической структуры математических предложений
- 2.6. Алгебраические операции над различными математическими объектами
- 2.7. Вопросы для самоконтроля по теме «Теория множеств»
- Глава 3. Структуры на множестве. Комбинаторика
- 3.1. Перестановки
- 3.2. Размещения
- 3.3. Сочетания
- 3.4. Вопросы для самоконтроля по теме «Комбинаторика»
- Часть 2. Основы теории вероятностей Глава 4. Случайные события
- 4.1. Основные понятия теории вероятностей. Виды случайных событий
- 4.2. Алгебра случайных событий
- 4.3. Определение вероятности
- 4.3.1. Классическое определение вероятности
- 4.3.2. Аксиомы теории вероятностей. Аксиоматическое определение вероятности
- 4.4. Теоремы сложения и умножения вероятностей
- 4.4.1. Сложение вероятностей несовместных событий
- 4.4.2. Умножение вероятностей независимых событий
- 4.4.3. Вероятность появления хотя бы одного события
- 4.4.4. Умножение вероятностей зависимых событий. Условная вероятность
- 4.4.5. Сложение вероятностей совместных событий
- 4.5. Формула полной вероятности
- 4.6. Формула Байеса
- 4.7. Вопросы для самоконтроля по теме «Основы теории вероятностей»
- Глава 5. Случайные величины
- 5.1. Понятие случайной величины
- 5.2. Дискретная случайная величина
- 5.2.1. Закон распределения дискретной случайной величины
- 5.2.2. Числовые характеристики дискретных случайных величин
- 5.3. Непрерывная случайная величина
- 5.3.1. Функция распределения вероятностей и плотность распределения вероятностей непрерывной случайной величины
- 5.3.2. Числовые характеристики непрерывной случайной величины
- 5.3.3. Равномерный и нормальный законы распределения непрерывных случайных величин
- 5.3.4. Вероятность попадания в заданный интервал нормальной случайной величины
- 5.3.5. Вычисление вероятности заданного отклонения нормальной случайной величины
- 5.4. Вопросы для самоконтроля по теме «Случайная величина»
- Часть 3. Элементы математической статистики Глава 6. Статистические оценки параметров распределения
- 6.1. Предмет и задачи математической статистики
- 6.2. Выборочный метод
- 6.2.1 Полигон и гистограмма
- 6.2.2. Эмпирическая функция распределения
- 6.3. Статистические оценки параметров распределения
- 6.4. Некоторые статистические распределения
- 6.4.2. Распределение Стьюдента
- 6.5. Интервальные оценки
- 6.5.1. Доверительные интервалы для оценки математического ожидания нормального распределения случайной величины
- 6.5.2. Доверительные интервалы для математического ожидания при известной дисперсии
- 6.5.3. Оценка генеральной дисперсии по исправленной выборочной
- 6.5.4. Доверительные интервалы для математического ожидания при неизвестной дисперсии
- Глава 7. Проверка статистических гипотез
- 7.1. Понятие и классификация статистических гипотез
- 7.2. Общая схема проверки гипотез
- 7.3. Статистическая проверка гипотез о параметрах распределения
- 7.4. Вопросы для самоконтроля по теме «Элементы математической статистики»
- Часть 4. Алгоритмизация и программирование Глава 8. Основы алгоритмизации
- 8.1. Понятие и свойства алгоритма
- 8.2. Таблица блоков
- 8.3. Линейные алгоритмы
- 8.4. Ветвления
- 8.5. Циклы. Повтор с заданным количеством циклов
- 8.6. Вопросы для самоконтроля по теме «Алгоритмизация»
- Глава 9. Программирование на Паскале
- 9.1. Конструкция языка Turbo-Pascal
- 9.1.1. Алфавит
- 9.1.2. Данные и типы данных
- 9.1.3. Стандартные функции
- 9.1.4. Арифметические, логические, символьные выражения
- 9.2. Структура программы на языке Паскаль
- 9.3. Основные операторы Паскаля
- 9.3.1. Оператор присваивания
- 9.3.2. Операторы ввода
- 9.3.3. Операторы вывода
- 9.3.4. Комментарий
- 9.4. Программы линейных алгоритмов
- 9.5. Операторы передачи управления
- 9.5.1. Оператор безусловного перехода
- 9.5.2. Операторы условного перехода
- 9.5.3. Оператор выбора варианта
- 9.6. Разветвляющийся алгоритм
- 9.7. Операторы цикла
- 9.8. Программы циклических алгоритмов
- 9.9. Массивы
- 9.9.1. Понятие и описание массива
- 9.9.2. Ввод и вывод элементов массивов
- 9.9.3. Операции с массивами
- 9.10. Вопросы для самоконтроля по теме «Программирование»
- Литература
- Приложениe 1
- Приложениe 2
- Приложениe 3
- Математика и информатика учебное пособие