logo
Пособие по мат_инф

Глава 2. Основные понятия теории множеств. Основные структуры

В конце XIXвека в математической науке возникла необходимость уточнить смысл таких понятий, как число, функция, непрерывность и т. д. Для этого нужно было определить, что такое натуральное число. Поиски ответа на эти сложные вопросы способствовали развитию новых математических идей. Поэтому в концеXIXи начале ХХ века происходил пересмотр старых представлений буквально во всех областях математических знаний. В результате в концеXIXвека возникла новая область математики – теория множеств, одним из создателей которой был немецкий математик Георг Кантор [1845-1918]. За небольшой срок теория множеств стала фундаментом всей математики. В теории множеств в полной мере используется аксиоматический подход, то есть используются постулаты, утверждения без доказательств. В частности, аксиомы, определяющие множество N – натуральных чисел, множество Z – целых чисел, аксиомы умножения, полной упорядоченности. Ввиду очевидности каждого из постулатов, данные аксиомы в дальнейшем изложении опускаются.

Современная математика занимается не столько объектами исследования, сколько структурой отношений между этими объектами. Математика в первую очередь уделяет внимание основным структурам, в частности, таким понятиям: число, точка, векторные пространства, числовые функции, пределы и так далее, которые составляют в целом элементарную математику.

Основные структуры являются началом для построения всех разделов математики. Теория множеств занимается структурой отношений между этими объектами. В ней уточняется смысл основных терминов обиходного языка, вводятся символы, устанавливающие условия существования отношений, позволяющие выразить сжато, с помощью формул высказывания, которые лучше выявят их логическое и математическое содержание. На основе теории множеств появился теоретико-множественный язык, который позволяет описывать и объяснять математические высказывания в краткой и понятной форме, используя специальные символы и термины. Этот язык применяется во всех разделах математики. Каждый обучающийся математике независимо от специализации должен знать и понимать этот язык, как фундамент, на котором строятся основные понятия, методы в последующих разделах и курсах, которые требуется изучить.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4