logo
Пособие по мат_инф

4.4. Теоремы сложения и умножения вероятностей

Систему аксиоматического обоснования определения вероятности построил А.Н. Колмогоров в 1933 г.

Числовая функция Р(А), заданная на алгебре F – подмножеств пространства элементарных исходов – , называется вероятностью случайного события А, если она удовлетворяет следующим свойствам (аксиомам):

А1 (аксиома 1). Р(а) > 0; AF.

Аксиому 1 можно прочитать: «вероятность случайного события А всегда величина положительная для любого события, принадлежащего подмножеству F.

A2 (аксиома 2). P()=1.

Аксиома 2 может быть сформулирована следующим образом: вероятность достоверного события равна единице.

A3 (аксиома 3). Если AB= то P(AB)=P(A)+P(B).

Аксиома 3 может быть сформулирована следующим образом: если события А и В несовместны, то Р(А+В) = P(A)+P(B).

Как следствие из этих аксиом можно сформулировать далее:

Аксиома 4. Вероятность случайного события есть положительное значение, заключенное между нулем и единицей. 0 < Р(А) <1.

Аксиома 5. Вероятность невозможного события равна нулю. Р(А)=0.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4