2.1. Понятие множества
Главные математические понятия: точка, прямая, множество, функция, вектор, уравнение, отношение и т.д. образуют основания математики. В каждом разделе математики используется какое-то понятие из оснований математики. Понятия: натуральные числа, целые или вещественные числа, геометрические фигуры, числовые функции и т.д. называют множествами. Понятие множества является фундаментальным понятием математики. Если обратиться к первой главе, то можно это понятие по правилам аксиоматического построения теории отнести к первичным, для которых нет определений. Обычно слово «множество» связывают с большим числом предметов. Например: множество дорог, машин, газет, учащихся школ, студентов вузов. В отличие от обыденных представлений «множество» как производное от слова «много», в математике можно рассматривать множество, состоящее из одного объекта или не содержащее ни одного объекта.
В 1872 г. Георг Кантор, создатель теории множеств, определил множество как «объединение в одно целое объектов, хорошо различимых нашей интуицией или нашей мыслью». Понятие множества аналогично определениям совокупности, собрания, класса, семейства и т.д. Математическое понятие множества постепенно выделилось из выше перечисленных представлений. Понятие числа относится к так называемым начальным понятиям, т.е. к понятиям, которые могут быть разъяснены, но не могут быть строго определены. Для числовых множеств в математике приняты стандартные обозначения:
N – множество натуральных чисел;
Z – множество целых чисел;
Q – множество рациональных чисел (дробь m/n,где m,n – целые числа);
R – множество вещественных (действительных чисел) чисел;
R+ – множество вещественных положительных чисел;
C – множество комплексных чисел.
Таким образом, можно сделать вывод:
Понятие «множество» является фундаментальным понятием математики и не имеет определения. Природа порождения любого множества разнообразна, в частности, окружающие предметы, живая природа и др.
Определение 1: Объекты, из которых образовано множество, называютсяэлементами данного множества. Для обозначения множества используют заглавные буквы латинского алфавита: например X, Y, Z, а в фигурных скобках через запятую выписывают его элементы строчными буквами, например: {x,y,z}.
Пример обозначения множества и его элементов:
X = {x1, x2,…, xn} – множество, состоящее из n элементов. Если элемент x принадлежит множеству X, то следует записать: xX, иначе элемент x не принадлежит множеству X, что записывается: xX. Элементами абстрактного множества могут быть, например, числа, функции, буквы, фигуры и т.д. В математике в любом разделе используется понятие множества. В частности, можно привести некоторые конкретные множества вещественных чисел. Множество вещественных чисел х, удовлетворяющих неравенствам:
а ≤ x ≤ b называется сегментоми обозначается [a,b];
а ≤ x < b или а < x ≤ b называется полусегментоми обозначается: [a,b) или (a,b];
а < x < b называется интерваломи обозначается (a,b).
Определение 2: Множество, имеющее конечное число элементов, называется конечным. Пример. X = {x1, x2, x3}.
Определение 3: Множество называетсябесконечным, если оно состоит из бесконечного числа элементов. Например, множество всех вещественных чисел бесконечно. Пример записи. X = {x1, x2, ...}.
Определение 4: Множество, в котором нет ни одного элемента, называют пустым множеством и обозначают символом.
Характеристикой множества является понятие мощности. Мощность – это количество его элементов. Множество Y={y1,y2,...} имеет ту же мощность, что и множествоX={x1,x2,...}, если существует взаимно однозначное соответствие y= f(x) между элементами этих множеств. Такие множества имеют одинаковую мощность или равномощны. Пустое множество имеет нулевую мощность.
Yandex.RTB R-A-252273-3- Математика и информатика
- Содержание
- Часть 1. Основания математики Глава 1. Понятийный аппарат аксиоматического метода
- 1.1. Понятие аксиоматического метода
- 1.2. Аксиоматическое построение математической теории
- 1.3. Вопросы для самоконтроля по теме «Аксиоматический метод»
- Глава 2. Основные понятия теории множеств. Основные структуры
- 2.1. Понятие множества
- 2.2. Способы задания множеств
- 2.3. Алгебра множеств
- 2.3.1. Отношения между множествами
- 2.3.2. Операции над множествами
- 2.3.3. Алгебраические свойства операций над множествами
- 2.3.4. Геометрическая интерпретация операций над множествами
- 2.4. Декартово произведение множеств. Бинарные отношения
- 2.5. Символический язык логической структуры математических предложений
- 2.6. Алгебраические операции над различными математическими объектами
- 2.7. Вопросы для самоконтроля по теме «Теория множеств»
- Глава 3. Структуры на множестве. Комбинаторика
- 3.1. Перестановки
- 3.2. Размещения
- 3.3. Сочетания
- 3.4. Вопросы для самоконтроля по теме «Комбинаторика»
- Часть 2. Основы теории вероятностей Глава 4. Случайные события
- 4.1. Основные понятия теории вероятностей. Виды случайных событий
- 4.2. Алгебра случайных событий
- 4.3. Определение вероятности
- 4.3.1. Классическое определение вероятности
- 4.3.2. Аксиомы теории вероятностей. Аксиоматическое определение вероятности
- 4.4. Теоремы сложения и умножения вероятностей
- 4.4.1. Сложение вероятностей несовместных событий
- 4.4.2. Умножение вероятностей независимых событий
- 4.4.3. Вероятность появления хотя бы одного события
- 4.4.4. Умножение вероятностей зависимых событий. Условная вероятность
- 4.4.5. Сложение вероятностей совместных событий
- 4.5. Формула полной вероятности
- 4.6. Формула Байеса
- 4.7. Вопросы для самоконтроля по теме «Основы теории вероятностей»
- Глава 5. Случайные величины
- 5.1. Понятие случайной величины
- 5.2. Дискретная случайная величина
- 5.2.1. Закон распределения дискретной случайной величины
- 5.2.2. Числовые характеристики дискретных случайных величин
- 5.3. Непрерывная случайная величина
- 5.3.1. Функция распределения вероятностей и плотность распределения вероятностей непрерывной случайной величины
- 5.3.2. Числовые характеристики непрерывной случайной величины
- 5.3.3. Равномерный и нормальный законы распределения непрерывных случайных величин
- 5.3.4. Вероятность попадания в заданный интервал нормальной случайной величины
- 5.3.5. Вычисление вероятности заданного отклонения нормальной случайной величины
- 5.4. Вопросы для самоконтроля по теме «Случайная величина»
- Часть 3. Элементы математической статистики Глава 6. Статистические оценки параметров распределения
- 6.1. Предмет и задачи математической статистики
- 6.2. Выборочный метод
- 6.2.1 Полигон и гистограмма
- 6.2.2. Эмпирическая функция распределения
- 6.3. Статистические оценки параметров распределения
- 6.4. Некоторые статистические распределения
- 6.4.2. Распределение Стьюдента
- 6.5. Интервальные оценки
- 6.5.1. Доверительные интервалы для оценки математического ожидания нормального распределения случайной величины
- 6.5.2. Доверительные интервалы для математического ожидания при известной дисперсии
- 6.5.3. Оценка генеральной дисперсии по исправленной выборочной
- 6.5.4. Доверительные интервалы для математического ожидания при неизвестной дисперсии
- Глава 7. Проверка статистических гипотез
- 7.1. Понятие и классификация статистических гипотез
- 7.2. Общая схема проверки гипотез
- 7.3. Статистическая проверка гипотез о параметрах распределения
- 7.4. Вопросы для самоконтроля по теме «Элементы математической статистики»
- Часть 4. Алгоритмизация и программирование Глава 8. Основы алгоритмизации
- 8.1. Понятие и свойства алгоритма
- 8.2. Таблица блоков
- 8.3. Линейные алгоритмы
- 8.4. Ветвления
- 8.5. Циклы. Повтор с заданным количеством циклов
- 8.6. Вопросы для самоконтроля по теме «Алгоритмизация»
- Глава 9. Программирование на Паскале
- 9.1. Конструкция языка Turbo-Pascal
- 9.1.1. Алфавит
- 9.1.2. Данные и типы данных
- 9.1.3. Стандартные функции
- 9.1.4. Арифметические, логические, символьные выражения
- 9.2. Структура программы на языке Паскаль
- 9.3. Основные операторы Паскаля
- 9.3.1. Оператор присваивания
- 9.3.2. Операторы ввода
- 9.3.3. Операторы вывода
- 9.3.4. Комментарий
- 9.4. Программы линейных алгоритмов
- 9.5. Операторы передачи управления
- 9.5.1. Оператор безусловного перехода
- 9.5.2. Операторы условного перехода
- 9.5.3. Оператор выбора варианта
- 9.6. Разветвляющийся алгоритм
- 9.7. Операторы цикла
- 9.8. Программы циклических алгоритмов
- 9.9. Массивы
- 9.9.1. Понятие и описание массива
- 9.9.2. Ввод и вывод элементов массивов
- 9.9.3. Операции с массивами
- 9.10. Вопросы для самоконтроля по теме «Программирование»
- Литература
- Приложениe 1
- Приложениe 2
- Приложениe 3
- Математика и информатика учебное пособие