logo
Пособие по мат_инф

Часть 2. Основы теории вероятностей Глава 4. Случайные события

В математике существует наука, которая изучает объекты, связанные с понятиями случайности и вероятности. Теория вероятностей есть математическая наука, изучающая закономерности в случайных явлениях. Случайное явление (событие) – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по-иному. Математические законы теории вероятностей являются отражением реальных статистических законов, объективно существующих в массовых случайных явлениях природы, к изучению которых теория вероятностей применяет математические методы и по своему методу является одним из разделов математики.

Предметом теории вероятностей является изучение вероятностных закономерностей массовых однородных случайных событий. Проникновение случайности в математику наблюдались в Древней Греции. Математическое понятие вероятности возникло из анализа азартных игр (кости, карты). Развитие страхового дела связано с вероятностями и стимулировало интерес к подобным задачам. Первые работы в этом направлении связаны с созданием теории азартных игр. Паскаль и Ферма установили некоторые положения теории вероятностей в 1654 году. Христиан Гюйгенс спустя три года написал книгу о расчётах в азартных играх. В XVIII веке Якоб Бернулли доказал теорему, которую позже назвали законом больших чисел. Среди учёных этого периода следует назвать: Гаусса, Муавра, Лапласа, Пуассона и др.

Большой вклад в развитие теории вероятностей внесли русские ученые: П.Л.Чебышев и его ученики: А.А.Марков, А.М.Ляпунов. Среди советских математиков следует отметить С.Н.Бернштейна, В.И.Романовского, Н.В.Смирнова и др. Аксиоматический подход к вероятности окончательно сформулировал советский математик академик А.Н. Колмогоров в своей статье «Об основных понятиях теории вероятностей». Аксиоматика А.Н. Колмогорова составляет фундаментальную основу теории вероятностей. Теорию вероятностей применяют при оценках ошибок наблюдений, измерений, в демографии, в теории стрельбы и т.д. Вероятностный подход в решении многих задач (социологических, экономических, технологических и других) в настоящее время является актуальным. Все это предопределяет необходимость овладения методами теории вероятностей и математической статистики как инструментом статистического анализа полученной информации в разнообразных сферах деятельности человека, а также прогнозирования ожидаемых результатов при решении важнейших профессиональных задач.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4