7.2. Общая схема проверки гипотез
Для проверки нулевой гипотезы используют специально подобранную случайную величину, точное или приближённое распределение которой известно, обозначают её через Z, если она распределена нормально, T – по закону Стьюдента, 2 – по закону «хи–квадрат». Данная специально подобранная случайная величина называется статистическим критерием или критерием значимости, который в дальнейшем будет обозначаться через Z. Статистический критерий служит для проверки нулевой гипотезы.
Например, если проверяют гипотезу о равенстве дисперсий двух нормальных генеральных совокупностей, то в качестве критерия принимают отношение исправленных выборочных дисперсий. Для проверки гипотезы по данным выборок вычисляют частные значения входящих в критерий величин и получают наблюдаемое значение критерия. Наблюдаемым значением критерия Zнаблназывают значение критерия, вычисленное по выборкам. Например, если по двум выборкам найдены выборочные дисперсии d1=27; d2=9, то наблюдаемое значение критерия равно отношению большей исправленной дисперсии к меньшей:Задачу проверки гипотез можно сформулировать следующим образом.
1. Требуется найти случайную величину Z, которую ещё называют статистикой критерия, удовлетворяющую двум основным требованиям:
а) Значение критерия можно посчитать только на основании выборки.
б) Распределение критерия известно в предположении, что нулевая гипотеза верна.
2. После поиска или выбора статистики находится критическая область. На числовой оси выделяется область, попадание в которую для случайной величины маловероятно. Малая вероятность задаётся, как и в доверительных интервалах, малым числом – , которое называют уровнем значимости. Вероятность совершить ошибку первого рода (вероятность отвергнуть правильную гипотезу) равна– уровню значимости.
Критическойобластьюназывают совокупность значений критерия Z, при которых нулевую гипотезу отвергают. Областью принятия гипотез называют совокупность значений критерия Z, при которых нулевую гипотезу принимают.
Критическимиточками(границами) – zkpназывают точки, отделяющие критическую область от области принятия гипотезы.
Различают три вида критической области:
правосторонняя, определяемая неравенством Z > zkp> 0;
левосторонняя, определяемая неравенством Z < zkp< 0;
двусторонняя, определяемая неравенством Z< -zкр ; Z>zкр.
В частности, если критические точки симметричны относительно нуля, то двусторонняя критическая область определяется неравенством Z> zkp> 0. При отыскании критической области задаются достаточно малой вероятностью – уровнем значимостии ищут критические точки, исходя из требования, чтобы вероятность того, что критерий Z примет значения, лежащие в критической области, была равна принятому уровню значимости. В результате получают:
для правосторонней критической области:
P (Z > zkp) =;
(7.1)
для левосторонней критической области P (Z < zkp) =;
для двусторонней симметричной области P (Z > zkp) =/2 .
Основной принцип статистической проверки гипотез заключается в следующем:
Если наблюдаемое значение критерия Zнабл, вычисленное по данным выборки, принадлежит критической области, то гипотезу отвергают.
Если наблюдаемое значение не принадлежит критической области, то нет оснований отвергать гипотезу.
Для каждого критерия имеются соответствующие таблицы, позволяющие по найти критические точки zkp, удовлетворяющие требованию (7.1).
Yandex.RTB R-A-252273-3- Математика и информатика
- Содержание
- Часть 1. Основания математики Глава 1. Понятийный аппарат аксиоматического метода
- 1.1. Понятие аксиоматического метода
- 1.2. Аксиоматическое построение математической теории
- 1.3. Вопросы для самоконтроля по теме «Аксиоматический метод»
- Глава 2. Основные понятия теории множеств. Основные структуры
- 2.1. Понятие множества
- 2.2. Способы задания множеств
- 2.3. Алгебра множеств
- 2.3.1. Отношения между множествами
- 2.3.2. Операции над множествами
- 2.3.3. Алгебраические свойства операций над множествами
- 2.3.4. Геометрическая интерпретация операций над множествами
- 2.4. Декартово произведение множеств. Бинарные отношения
- 2.5. Символический язык логической структуры математических предложений
- 2.6. Алгебраические операции над различными математическими объектами
- 2.7. Вопросы для самоконтроля по теме «Теория множеств»
- Глава 3. Структуры на множестве. Комбинаторика
- 3.1. Перестановки
- 3.2. Размещения
- 3.3. Сочетания
- 3.4. Вопросы для самоконтроля по теме «Комбинаторика»
- Часть 2. Основы теории вероятностей Глава 4. Случайные события
- 4.1. Основные понятия теории вероятностей. Виды случайных событий
- 4.2. Алгебра случайных событий
- 4.3. Определение вероятности
- 4.3.1. Классическое определение вероятности
- 4.3.2. Аксиомы теории вероятностей. Аксиоматическое определение вероятности
- 4.4. Теоремы сложения и умножения вероятностей
- 4.4.1. Сложение вероятностей несовместных событий
- 4.4.2. Умножение вероятностей независимых событий
- 4.4.3. Вероятность появления хотя бы одного события
- 4.4.4. Умножение вероятностей зависимых событий. Условная вероятность
- 4.4.5. Сложение вероятностей совместных событий
- 4.5. Формула полной вероятности
- 4.6. Формула Байеса
- 4.7. Вопросы для самоконтроля по теме «Основы теории вероятностей»
- Глава 5. Случайные величины
- 5.1. Понятие случайной величины
- 5.2. Дискретная случайная величина
- 5.2.1. Закон распределения дискретной случайной величины
- 5.2.2. Числовые характеристики дискретных случайных величин
- 5.3. Непрерывная случайная величина
- 5.3.1. Функция распределения вероятностей и плотность распределения вероятностей непрерывной случайной величины
- 5.3.2. Числовые характеристики непрерывной случайной величины
- 5.3.3. Равномерный и нормальный законы распределения непрерывных случайных величин
- 5.3.4. Вероятность попадания в заданный интервал нормальной случайной величины
- 5.3.5. Вычисление вероятности заданного отклонения нормальной случайной величины
- 5.4. Вопросы для самоконтроля по теме «Случайная величина»
- Часть 3. Элементы математической статистики Глава 6. Статистические оценки параметров распределения
- 6.1. Предмет и задачи математической статистики
- 6.2. Выборочный метод
- 6.2.1 Полигон и гистограмма
- 6.2.2. Эмпирическая функция распределения
- 6.3. Статистические оценки параметров распределения
- 6.4. Некоторые статистические распределения
- 6.4.2. Распределение Стьюдента
- 6.5. Интервальные оценки
- 6.5.1. Доверительные интервалы для оценки математического ожидания нормального распределения случайной величины
- 6.5.2. Доверительные интервалы для математического ожидания при известной дисперсии
- 6.5.3. Оценка генеральной дисперсии по исправленной выборочной
- 6.5.4. Доверительные интервалы для математического ожидания при неизвестной дисперсии
- Глава 7. Проверка статистических гипотез
- 7.1. Понятие и классификация статистических гипотез
- 7.2. Общая схема проверки гипотез
- 7.3. Статистическая проверка гипотез о параметрах распределения
- 7.4. Вопросы для самоконтроля по теме «Элементы математической статистики»
- Часть 4. Алгоритмизация и программирование Глава 8. Основы алгоритмизации
- 8.1. Понятие и свойства алгоритма
- 8.2. Таблица блоков
- 8.3. Линейные алгоритмы
- 8.4. Ветвления
- 8.5. Циклы. Повтор с заданным количеством циклов
- 8.6. Вопросы для самоконтроля по теме «Алгоритмизация»
- Глава 9. Программирование на Паскале
- 9.1. Конструкция языка Turbo-Pascal
- 9.1.1. Алфавит
- 9.1.2. Данные и типы данных
- 9.1.3. Стандартные функции
- 9.1.4. Арифметические, логические, символьные выражения
- 9.2. Структура программы на языке Паскаль
- 9.3. Основные операторы Паскаля
- 9.3.1. Оператор присваивания
- 9.3.2. Операторы ввода
- 9.3.3. Операторы вывода
- 9.3.4. Комментарий
- 9.4. Программы линейных алгоритмов
- 9.5. Операторы передачи управления
- 9.5.1. Оператор безусловного перехода
- 9.5.2. Операторы условного перехода
- 9.5.3. Оператор выбора варианта
- 9.6. Разветвляющийся алгоритм
- 9.7. Операторы цикла
- 9.8. Программы циклических алгоритмов
- 9.9. Массивы
- 9.9.1. Понятие и описание массива
- 9.9.2. Ввод и вывод элементов массивов
- 9.9.3. Операции с массивами
- 9.10. Вопросы для самоконтроля по теме «Программирование»
- Литература
- Приложениe 1
- Приложениe 2
- Приложениe 3
- Математика и информатика учебное пособие