logo
Пособие по мат_инф

3.1. Перестановки

Задачи, связанные с перестановками, относятся к задачам комбинаторики. Например, перестановка книг на полках. В таких задачах подсчитывается количество возможных вариантов перестановок, причем в каждой комбинации должны присутствовать все объекты строго по одному разу.

Определение 1: Перестановкаминазывают комбинации, состоящие из одних и тех же n – различных элементов и отличающиеся только порядком их расположения.

Рn= n! = 1×2×3×…×n.

(3.1)

где: Рn– количество перестановок;

n! = 1 · 2 · 3· … · (n - 1) · n – произведение всех натуральных чисел от 1 до n включительно есть «n-факториал».

Необходимо учитывать, что факториал нуля равен единице: 0! = 1.

Пример 1.

Определить количество трехзначных чисел, которые можно составить из трех цифр: 3, 5, 7, с учётом использования каждой цифры в числе строго по одному разу.

Решение.

Количество трехзначных чисел в данном примере определяется по формуле перестановок (3.1) и равно: Р3= 1×2×3=6.

Пример 2.

Подсчитать количество способов расстановки на полке 5 разных книг.

Решение.

На первое место можно поставить любую из 5 книг, для каждого варианта первой книги на второе место может быть поставлена любая из оставшихся 4 книг. Итак, число перестановок из 5 книг равно:

5! = 54321= 120.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4