6.1. Предмет и задачи математической статистики
Теория вероятностей изучает математические модели случайных явлений, при этом сама математическая модель считается заданной. В задачах теории вероятностей исходят из того, что задано вероятностное пространство, множество элементарных исходов и вероятность любого события.
Так, например, если изучается некоторое случайное событие А, то известно Р(А). Если же речь идёт о случайной величине Х, то известен закон распределения вероятностей в какой-либо форме и, как следствие, числовые характеристики исследуемой случайной величины.
В практических задачах эти характеристики, как правило, неизвестны, но имеются некоторые экспериментальные данные о событии или случайной величине. Требуется на основании этих данных построить подходящую вероятностную модель изучаемого явления, то есть приближённо оценить неизвестные закон распределения и числовые характеристики исследуемой случайной величины на основе экспериментальных данных. Это и является задачей математической статистики. В математической статистике единственный объект это данные эксперимента. Результаты эксперимента выражаются значениями некоторой случайной величины.
В теории вероятностей вероятностное пространство задано и требуется предсказать возможное поведение случайной величины. В математической статистике наоборот, известны лишь результаты (значения случайной величины), по которым восстанавливается вероятностное пространство. По экспериментальным данным строится вероятностная модель явления, соответствующая этим данным, т.е. интерпретация данных.
Математической статистикойназывается наука, занимающаяся методами обработки экспериментальных данных, полученных в результате наблюдений над случайными явлениями. Первая задача математической статистики: указать способы сбора и группировки статистических данных, полученных в результате экспериментов. Вторая задача математической статистики: разработать методы анализа статистических данных.
Ко второй задаче относятся:
Оценка неизвестных параметров (вероятности события, функции распределения и её параметров и т.д.) с построением доверительных интервалов (методы оценивания).
Проверка статистических гипотез о виде неизвестного распределения и параметров распределения (методы проверки гипотез).
При этом решаются следующие в порядке сложности и важности задачи:
Описание явлений, то есть, упорядочение поступившего статистического материала, представление его в наиболее удобном для обозрения и анализа виде (таблицы, графики).
Анализ и прогноз, то есть приближённая оценка характеристик на основании статистических данных. Например, приближённая оценка математического ожидания и дисперсии наблюдаемой случайной величины и определение погрешностей этих оценок.
Выработка оптимальных решений. Например, определение числа опытов n, достаточного для того, чтобы ошибка от замены теоретических числовых характеристик их экспериментальными оценками не превышала заданного значения. В связи с этим возникает задача проверки правдоподобия гипотез о параметрах распределения и о законах распределения случайной величины, решением которой является возможность сделать один из выводов:
– отбросить гипотезу, как противоречащую опытным данным;
– принять гипотезу, считать ее приемлемой.
Математическая статистика помогает экспериментатору лучше разобраться в опытных данных, полученных в результате наблюдений над случайными явлениями; оценить, значимы или не значимы наблюдаемые факты; принять или отбросить те или иные гипотезы о природе случайных явлений.
Yandex.RTB R-A-252273-3- Математика и информатика
- Содержание
- Часть 1. Основания математики Глава 1. Понятийный аппарат аксиоматического метода
- 1.1. Понятие аксиоматического метода
- 1.2. Аксиоматическое построение математической теории
- 1.3. Вопросы для самоконтроля по теме «Аксиоматический метод»
- Глава 2. Основные понятия теории множеств. Основные структуры
- 2.1. Понятие множества
- 2.2. Способы задания множеств
- 2.3. Алгебра множеств
- 2.3.1. Отношения между множествами
- 2.3.2. Операции над множествами
- 2.3.3. Алгебраические свойства операций над множествами
- 2.3.4. Геометрическая интерпретация операций над множествами
- 2.4. Декартово произведение множеств. Бинарные отношения
- 2.5. Символический язык логической структуры математических предложений
- 2.6. Алгебраические операции над различными математическими объектами
- 2.7. Вопросы для самоконтроля по теме «Теория множеств»
- Глава 3. Структуры на множестве. Комбинаторика
- 3.1. Перестановки
- 3.2. Размещения
- 3.3. Сочетания
- 3.4. Вопросы для самоконтроля по теме «Комбинаторика»
- Часть 2. Основы теории вероятностей Глава 4. Случайные события
- 4.1. Основные понятия теории вероятностей. Виды случайных событий
- 4.2. Алгебра случайных событий
- 4.3. Определение вероятности
- 4.3.1. Классическое определение вероятности
- 4.3.2. Аксиомы теории вероятностей. Аксиоматическое определение вероятности
- 4.4. Теоремы сложения и умножения вероятностей
- 4.4.1. Сложение вероятностей несовместных событий
- 4.4.2. Умножение вероятностей независимых событий
- 4.4.3. Вероятность появления хотя бы одного события
- 4.4.4. Умножение вероятностей зависимых событий. Условная вероятность
- 4.4.5. Сложение вероятностей совместных событий
- 4.5. Формула полной вероятности
- 4.6. Формула Байеса
- 4.7. Вопросы для самоконтроля по теме «Основы теории вероятностей»
- Глава 5. Случайные величины
- 5.1. Понятие случайной величины
- 5.2. Дискретная случайная величина
- 5.2.1. Закон распределения дискретной случайной величины
- 5.2.2. Числовые характеристики дискретных случайных величин
- 5.3. Непрерывная случайная величина
- 5.3.1. Функция распределения вероятностей и плотность распределения вероятностей непрерывной случайной величины
- 5.3.2. Числовые характеристики непрерывной случайной величины
- 5.3.3. Равномерный и нормальный законы распределения непрерывных случайных величин
- 5.3.4. Вероятность попадания в заданный интервал нормальной случайной величины
- 5.3.5. Вычисление вероятности заданного отклонения нормальной случайной величины
- 5.4. Вопросы для самоконтроля по теме «Случайная величина»
- Часть 3. Элементы математической статистики Глава 6. Статистические оценки параметров распределения
- 6.1. Предмет и задачи математической статистики
- 6.2. Выборочный метод
- 6.2.1 Полигон и гистограмма
- 6.2.2. Эмпирическая функция распределения
- 6.3. Статистические оценки параметров распределения
- 6.4. Некоторые статистические распределения
- 6.4.2. Распределение Стьюдента
- 6.5. Интервальные оценки
- 6.5.1. Доверительные интервалы для оценки математического ожидания нормального распределения случайной величины
- 6.5.2. Доверительные интервалы для математического ожидания при известной дисперсии
- 6.5.3. Оценка генеральной дисперсии по исправленной выборочной
- 6.5.4. Доверительные интервалы для математического ожидания при неизвестной дисперсии
- Глава 7. Проверка статистических гипотез
- 7.1. Понятие и классификация статистических гипотез
- 7.2. Общая схема проверки гипотез
- 7.3. Статистическая проверка гипотез о параметрах распределения
- 7.4. Вопросы для самоконтроля по теме «Элементы математической статистики»
- Часть 4. Алгоритмизация и программирование Глава 8. Основы алгоритмизации
- 8.1. Понятие и свойства алгоритма
- 8.2. Таблица блоков
- 8.3. Линейные алгоритмы
- 8.4. Ветвления
- 8.5. Циклы. Повтор с заданным количеством циклов
- 8.6. Вопросы для самоконтроля по теме «Алгоритмизация»
- Глава 9. Программирование на Паскале
- 9.1. Конструкция языка Turbo-Pascal
- 9.1.1. Алфавит
- 9.1.2. Данные и типы данных
- 9.1.3. Стандартные функции
- 9.1.4. Арифметические, логические, символьные выражения
- 9.2. Структура программы на языке Паскаль
- 9.3. Основные операторы Паскаля
- 9.3.1. Оператор присваивания
- 9.3.2. Операторы ввода
- 9.3.3. Операторы вывода
- 9.3.4. Комментарий
- 9.4. Программы линейных алгоритмов
- 9.5. Операторы передачи управления
- 9.5.1. Оператор безусловного перехода
- 9.5.2. Операторы условного перехода
- 9.5.3. Оператор выбора варианта
- 9.6. Разветвляющийся алгоритм
- 9.7. Операторы цикла
- 9.8. Программы циклических алгоритмов
- 9.9. Массивы
- 9.9.1. Понятие и описание массива
- 9.9.2. Ввод и вывод элементов массивов
- 9.9.3. Операции с массивами
- 9.10. Вопросы для самоконтроля по теме «Программирование»
- Литература
- Приложениe 1
- Приложениe 2
- Приложениe 3
- Математика и информатика учебное пособие