6.3. Статистические оценки параметров распределения
Пусть дискретная случайная величина Х задана генеральной совокупностью. Требуется оценить количественные характеристики заданной совокупности: математическое ожидание, дисперсию и установить функцию распределения дискретной случайной величины Х. Обычно практически известны лишь данные выборки. Через эти данные следует оценить количественные характеристики дискретной случайной величины Х.
Статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин. Статистические оценки параметров распределения должны удовлетворять следующим требованиям: состоятельности, несмещённости, эффективности.
Состоятельнойназывают статистическую оценку, которая при неограниченном увеличении числа наблюдений стремится по вероятности к оцениваемому параметру.
Несмещённойназывают статистическую оценку, если её математическое ожидание равно оцениваемой характеристике независимо от числа наблюдений. Несмещённая статистическая оценка называется эффективной, если она имеет минимально возможную дисперсию.
Генеральная средняя и выборочная средняя
Пусть задана дискретная случайная величина Х в виде генеральной совокупности. Генеральной средней называют среднее арифметическое значений признака генеральной совокупности:
| . | (6.2) |
где xi– варианта генеральной совокупности, ni– частота варианты xi,
.
N– все возможные значения частот дискретной случайной величины Х.
В частном случае, когда генеральная совокупность содержит по одному значению каждой варианты, генеральная средняя равна:
| . | (6.2а) |
Если рассматривать значения Х генеральной совокупности как случайную величину, то математическое ожидание М(Х) равно генеральной средней М(Х)= xг, а генеральная средняя определяется как математическое ожидание:
xг= М(Х).
Пусть извлечена выборка объема n из генеральной совокупности относительно количественного признака X. Выборочной среднейxназывается среднее арифметическое значение признака выборочной совокупности.
| , | (6.3) |
где
.
В частном случае, когда выборка содержит по одному значению каждой варианты, выборочная средняя равна:
| . | (6.3а) |
Аналогично генеральной совокупности можно сделать вывод относительно выборочной средней. Если рассматривать значения Х выборки, как случайную величину, то математическое ожидание m(Х) равно выборочной средней:
| . | (6.4) |
Генеральной дисперсией называют среднее арифметическое квадратов отклонения значений признака X от их среднего значения xг. Рассеяние значений количественного признака X в выборке вокруг своего среднего значенияxхарактеризует выборочная дисперсия. Выборочной дисперсией Dвназывается среднее арифметическое квадратов отклонения значений признака X от их среднего значения.
| . | (6.5) |
В частном случае, когда выборка содержит по одному значению каждой варианты, выборочная дисперсия равна:
| . | (6.5а) |
Пример 4.
Выборочная совокупность задана таблицей распределения в примере 1.
Таблица 6.6
i | 1 | 2 | 3 | 4 |
xi | 2 | 3 | 5 | 10 |
ni | 5 | 5 | 3 | 2 |
Найти выборочное математическое ожидание, дисперсию, среднеквадратическое отклонение для распределения, заданного таблицей 6.6.
Решение.
Выборочная средняя вычисляется по формуле (6.4):
Выборочная дисперсия Dввычисляется по формуле (6.5):
Выборочное среднее квадратическое отклонение: .
В задачах выборочная совокупность может быть задана таблицей распределения с относительной частотой. Рассмотрим пример 4, заменив в таблице 6.6 последнюю строку относительной частотой pi=ni/n. В примереn=15. Выборочная дисперсия Dввычисляется по данным таблицы 6.7.
Таблица 6.7
i | 1 | 2 | 3 | 4 |
xi | 2 | 3 | 5 | 10 |
pi | P1 =5/15 | P2 =5/15 | P3 =3/15 | P4 =2/15 |
Выборочная дисперсия Dвможет быть вычислена как с использованием относительной частоты, так и абсолютной частоты.
Характеристики случайной величины, построенные на основании выборочных данных, называются выборочнымиилиточечнымиоценками.
Точечной называют оценку, которая определяется одним числом. Все оценки, рассмотренные в примере 4, являются точечными.
Yandex.RTB R-A-252273-3- Математика и информатика
- Содержание
- Часть 1. Основания математики Глава 1. Понятийный аппарат аксиоматического метода
- 1.1. Понятие аксиоматического метода
- 1.2. Аксиоматическое построение математической теории
- 1.3. Вопросы для самоконтроля по теме «Аксиоматический метод»
- Глава 2. Основные понятия теории множеств. Основные структуры
- 2.1. Понятие множества
- 2.2. Способы задания множеств
- 2.3. Алгебра множеств
- 2.3.1. Отношения между множествами
- 2.3.2. Операции над множествами
- 2.3.3. Алгебраические свойства операций над множествами
- 2.3.4. Геометрическая интерпретация операций над множествами
- 2.4. Декартово произведение множеств. Бинарные отношения
- 2.5. Символический язык логической структуры математических предложений
- 2.6. Алгебраические операции над различными математическими объектами
- 2.7. Вопросы для самоконтроля по теме «Теория множеств»
- Глава 3. Структуры на множестве. Комбинаторика
- 3.1. Перестановки
- 3.2. Размещения
- 3.3. Сочетания
- 3.4. Вопросы для самоконтроля по теме «Комбинаторика»
- Часть 2. Основы теории вероятностей Глава 4. Случайные события
- 4.1. Основные понятия теории вероятностей. Виды случайных событий
- 4.2. Алгебра случайных событий
- 4.3. Определение вероятности
- 4.3.1. Классическое определение вероятности
- 4.3.2. Аксиомы теории вероятностей. Аксиоматическое определение вероятности
- 4.4. Теоремы сложения и умножения вероятностей
- 4.4.1. Сложение вероятностей несовместных событий
- 4.4.2. Умножение вероятностей независимых событий
- 4.4.3. Вероятность появления хотя бы одного события
- 4.4.4. Умножение вероятностей зависимых событий. Условная вероятность
- 4.4.5. Сложение вероятностей совместных событий
- 4.5. Формула полной вероятности
- 4.6. Формула Байеса
- 4.7. Вопросы для самоконтроля по теме «Основы теории вероятностей»
- Глава 5. Случайные величины
- 5.1. Понятие случайной величины
- 5.2. Дискретная случайная величина
- 5.2.1. Закон распределения дискретной случайной величины
- 5.2.2. Числовые характеристики дискретных случайных величин
- 5.3. Непрерывная случайная величина
- 5.3.1. Функция распределения вероятностей и плотность распределения вероятностей непрерывной случайной величины
- 5.3.2. Числовые характеристики непрерывной случайной величины
- 5.3.3. Равномерный и нормальный законы распределения непрерывных случайных величин
- 5.3.4. Вероятность попадания в заданный интервал нормальной случайной величины
- 5.3.5. Вычисление вероятности заданного отклонения нормальной случайной величины
- 5.4. Вопросы для самоконтроля по теме «Случайная величина»
- Часть 3. Элементы математической статистики Глава 6. Статистические оценки параметров распределения
- 6.1. Предмет и задачи математической статистики
- 6.2. Выборочный метод
- 6.2.1 Полигон и гистограмма
- 6.2.2. Эмпирическая функция распределения
- 6.3. Статистические оценки параметров распределения
- 6.4. Некоторые статистические распределения
- 6.4.2. Распределение Стьюдента
- 6.5. Интервальные оценки
- 6.5.1. Доверительные интервалы для оценки математического ожидания нормального распределения случайной величины
- 6.5.2. Доверительные интервалы для математического ожидания при известной дисперсии
- 6.5.3. Оценка генеральной дисперсии по исправленной выборочной
- 6.5.4. Доверительные интервалы для математического ожидания при неизвестной дисперсии
- Глава 7. Проверка статистических гипотез
- 7.1. Понятие и классификация статистических гипотез
- 7.2. Общая схема проверки гипотез
- 7.3. Статистическая проверка гипотез о параметрах распределения
- 7.4. Вопросы для самоконтроля по теме «Элементы математической статистики»
- Часть 4. Алгоритмизация и программирование Глава 8. Основы алгоритмизации
- 8.1. Понятие и свойства алгоритма
- 8.2. Таблица блоков
- 8.3. Линейные алгоритмы
- 8.4. Ветвления
- 8.5. Циклы. Повтор с заданным количеством циклов
- 8.6. Вопросы для самоконтроля по теме «Алгоритмизация»
- Глава 9. Программирование на Паскале
- 9.1. Конструкция языка Turbo-Pascal
- 9.1.1. Алфавит
- 9.1.2. Данные и типы данных
- 9.1.3. Стандартные функции
- 9.1.4. Арифметические, логические, символьные выражения
- 9.2. Структура программы на языке Паскаль
- 9.3. Основные операторы Паскаля
- 9.3.1. Оператор присваивания
- 9.3.2. Операторы ввода
- 9.3.3. Операторы вывода
- 9.3.4. Комментарий
- 9.4. Программы линейных алгоритмов
- 9.5. Операторы передачи управления
- 9.5.1. Оператор безусловного перехода
- 9.5.2. Операторы условного перехода
- 9.5.3. Оператор выбора варианта
- 9.6. Разветвляющийся алгоритм
- 9.7. Операторы цикла
- 9.8. Программы циклических алгоритмов
- 9.9. Массивы
- 9.9.1. Понятие и описание массива
- 9.9.2. Ввод и вывод элементов массивов
- 9.9.3. Операции с массивами
- 9.10. Вопросы для самоконтроля по теме «Программирование»
- Литература
- Приложениe 1
- Приложениe 2
- Приложениe 3
- Математика и информатика учебное пособие