4.4.3. Вероятность появления хотя бы одного события
Вероятность того, что произойдет, по крайней мере, одно из событий ,
определяется по формуле:
Теорема 5.Вероятность появления хотя бы одного из событий (А1, А2,…,Аn), независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий.
| P (A) = 1 – q1q2...qn. | (4.8) |
Пример 10.
Студент сдает два экзамена в сессию. Вероятность сдать первый экзамен р1=0,8. Вероятность сдать второй экзамен р2=0,7. Какова вероятность, что студент сдаст хотя бы один экзамен в сессию.
Решение.
Вероятность события «не сдать первый экзамен» равна:
q1=1–р1=1–0,8 = 0,2.
Вероятность «не сдать второй экзамен»: q2=1– р2=1–0,7=0,3.
Оба события независимы. Вероятность события Р(А), где событие А – «студент сдаст хотя бы один экзамен», вычисляется по формуле (4.8):
Р(А)=1–q1q2=1–0,20,3=1–0,06=0,94.
Пример 11.
Три стрелка стреляют в цель независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0,6, для второго 0,7 и для третьего 0,75.
Найти вероятность:
Хотя бы одного попадания в цель, если каждый стрелок сделает по одному выстрелу.
Одного и только одного попадания в цель.
«Попадут в цель только два стрелка».
«Попадут в цель все стрелки одновременно».
Промаха всех стрелков одновременно.
Решение.
Пусть А, В, С – события, состоящие в том, что соответственно в цель попал первый, второй, третий стрелок. Из условия задачи следует, что:
Р(А) = 0,6; Р(В) = 0,7; Р(С) = 0,75.
1) Вероятность хотя бы одного попадания в цель равна: Р(А + В + С).
Событие (А+В+С) – хотя бы одно попадание в цель. Вероятность хотя бы одного попадания в цель по формуле (4.8): P(A+B+C)=1-P(A)P(B)P(C).
P(A+B+C)=1– (1–0,6)(1– 0,7)(1– 0,75)=1– 0,40,30,25 =1-0,03= 0,97.
2) Вероятность только одного попадания в цель.
Пусть D – событие, состоящее в том, что в цель попал только один стрелок. События «хотя бы одно попадание» и «одно попадание» – разные события. В задаче одно и только одно попадание – это событие D, состоящее из суммы событий: D=ABC+ABC+ABC.
Его вероятность из-за независимости стрельбы и несовместности слагаемых событий может быть определена по формулам (4.2а), (4.7):
.
Р(D)=0,6(1–0,7)(1–0,75)+0,7(1–0,6 )(1–0,75)+0,75(1–0,6 )(1– 0,7) = 0,205.
3) Вероятность того, что попадут в цель только два стрелка.
Пусть X – событие, состоящее в том, что в цель попали только два стрелка.
X=ABC+BAC+C AB.
Тогда вероятность того, что попадут в цель только два стрелка, равна:
.
P(X)=(1– 0,6)0,70,75+0,6(1– 0,7)0,75+0,60,7(1– 0,75)=0,21+0,135+0,105 =0,45.
4) Вероятность того, что попадут в цель все стрелки одновременно.
Событие ABC – все стрелки попали в цель.
Вероятность того, что попадут в цель все стрелки одновременно равна:
P(ABC) = P(A)P(B)P(C) = 0,60,70,75 = 0,315.
5) Вероятность промаха всех стрелков одновременно Р().
Событие ABC– все промахнулись. Вероятность промаха всех стрелков одновременно:P(ABC)=0,40,30,25=0,03.
Для проверки правильности решения используют формулу (4.3) для полной группы событий:
Р(D) + P(X) + P(ABC) + Р(ABC) = 0,205 + 0,45 + 0,315 + 0,03 = 1.
Yandex.RTB R-A-252273-3- Математика и информатика
- Содержание
- Часть 1. Основания математики Глава 1. Понятийный аппарат аксиоматического метода
- 1.1. Понятие аксиоматического метода
- 1.2. Аксиоматическое построение математической теории
- 1.3. Вопросы для самоконтроля по теме «Аксиоматический метод»
- Глава 2. Основные понятия теории множеств. Основные структуры
- 2.1. Понятие множества
- 2.2. Способы задания множеств
- 2.3. Алгебра множеств
- 2.3.1. Отношения между множествами
- 2.3.2. Операции над множествами
- 2.3.3. Алгебраические свойства операций над множествами
- 2.3.4. Геометрическая интерпретация операций над множествами
- 2.4. Декартово произведение множеств. Бинарные отношения
- 2.5. Символический язык логической структуры математических предложений
- 2.6. Алгебраические операции над различными математическими объектами
- 2.7. Вопросы для самоконтроля по теме «Теория множеств»
- Глава 3. Структуры на множестве. Комбинаторика
- 3.1. Перестановки
- 3.2. Размещения
- 3.3. Сочетания
- 3.4. Вопросы для самоконтроля по теме «Комбинаторика»
- Часть 2. Основы теории вероятностей Глава 4. Случайные события
- 4.1. Основные понятия теории вероятностей. Виды случайных событий
- 4.2. Алгебра случайных событий
- 4.3. Определение вероятности
- 4.3.1. Классическое определение вероятности
- 4.3.2. Аксиомы теории вероятностей. Аксиоматическое определение вероятности
- 4.4. Теоремы сложения и умножения вероятностей
- 4.4.1. Сложение вероятностей несовместных событий
- 4.4.2. Умножение вероятностей независимых событий
- 4.4.3. Вероятность появления хотя бы одного события
- 4.4.4. Умножение вероятностей зависимых событий. Условная вероятность
- 4.4.5. Сложение вероятностей совместных событий
- 4.5. Формула полной вероятности
- 4.6. Формула Байеса
- 4.7. Вопросы для самоконтроля по теме «Основы теории вероятностей»
- Глава 5. Случайные величины
- 5.1. Понятие случайной величины
- 5.2. Дискретная случайная величина
- 5.2.1. Закон распределения дискретной случайной величины
- 5.2.2. Числовые характеристики дискретных случайных величин
- 5.3. Непрерывная случайная величина
- 5.3.1. Функция распределения вероятностей и плотность распределения вероятностей непрерывной случайной величины
- 5.3.2. Числовые характеристики непрерывной случайной величины
- 5.3.3. Равномерный и нормальный законы распределения непрерывных случайных величин
- 5.3.4. Вероятность попадания в заданный интервал нормальной случайной величины
- 5.3.5. Вычисление вероятности заданного отклонения нормальной случайной величины
- 5.4. Вопросы для самоконтроля по теме «Случайная величина»
- Часть 3. Элементы математической статистики Глава 6. Статистические оценки параметров распределения
- 6.1. Предмет и задачи математической статистики
- 6.2. Выборочный метод
- 6.2.1 Полигон и гистограмма
- 6.2.2. Эмпирическая функция распределения
- 6.3. Статистические оценки параметров распределения
- 6.4. Некоторые статистические распределения
- 6.4.2. Распределение Стьюдента
- 6.5. Интервальные оценки
- 6.5.1. Доверительные интервалы для оценки математического ожидания нормального распределения случайной величины
- 6.5.2. Доверительные интервалы для математического ожидания при известной дисперсии
- 6.5.3. Оценка генеральной дисперсии по исправленной выборочной
- 6.5.4. Доверительные интервалы для математического ожидания при неизвестной дисперсии
- Глава 7. Проверка статистических гипотез
- 7.1. Понятие и классификация статистических гипотез
- 7.2. Общая схема проверки гипотез
- 7.3. Статистическая проверка гипотез о параметрах распределения
- 7.4. Вопросы для самоконтроля по теме «Элементы математической статистики»
- Часть 4. Алгоритмизация и программирование Глава 8. Основы алгоритмизации
- 8.1. Понятие и свойства алгоритма
- 8.2. Таблица блоков
- 8.3. Линейные алгоритмы
- 8.4. Ветвления
- 8.5. Циклы. Повтор с заданным количеством циклов
- 8.6. Вопросы для самоконтроля по теме «Алгоритмизация»
- Глава 9. Программирование на Паскале
- 9.1. Конструкция языка Turbo-Pascal
- 9.1.1. Алфавит
- 9.1.2. Данные и типы данных
- 9.1.3. Стандартные функции
- 9.1.4. Арифметические, логические, символьные выражения
- 9.2. Структура программы на языке Паскаль
- 9.3. Основные операторы Паскаля
- 9.3.1. Оператор присваивания
- 9.3.2. Операторы ввода
- 9.3.3. Операторы вывода
- 9.3.4. Комментарий
- 9.4. Программы линейных алгоритмов
- 9.5. Операторы передачи управления
- 9.5.1. Оператор безусловного перехода
- 9.5.2. Операторы условного перехода
- 9.5.3. Оператор выбора варианта
- 9.6. Разветвляющийся алгоритм
- 9.7. Операторы цикла
- 9.8. Программы циклических алгоритмов
- 9.9. Массивы
- 9.9.1. Понятие и описание массива
- 9.9.2. Ввод и вывод элементов массивов
- 9.9.3. Операции с массивами
- 9.10. Вопросы для самоконтроля по теме «Программирование»
- Литература
- Приложениe 1
- Приложениe 2
- Приложениe 3
- Математика и информатика учебное пособие