logo search
конспекты уроков по геометрии

II. Объяснение нового материала.

1. Используя рисунок учебника (рис. 341, с. 311), учитель объясняет построение многогранника, называемого призмой.

2. В тетрадях ученики записывают определения:

1) две плоскости называются параллельными, если они не имеют общих точек;

2) две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

3. Ввести определение n-угольной призмы, оснований призмы, боковых ребер призмы.

4. Призмы бывают прямыми и наклонными.

Введем понятие перпендикулярности прямой и плоскости, используя рисунок учебника (рис. 342, с. 312).

Если все боковые ребра призмы перпендикулярны к плоскостям ее оснований, то призма называется прямой (рис. 343, а); в противном случае призма называется наклонной (рис. 343, б). Прямая призма, основаниями которой являются правильные многоугольники, называется правильной (рис. 343, в).

Учитель демонстрирует учащимся модели различных призм.

5. Определение высоты призмы (рис. 344).

6. Определение параллелепипеда.

Четырехугольная призма, основаниями которой являются параллелограммы, называется параллелепипедом (рис. 345). Все шесть граней параллелепипеда – параллелограммы.

Если параллелепипед прямой, то есть его боковые ребра перпендикулярны к плоскостям оснований, то боковые грани – прямоугольники. Если же и основаниями прямого параллелепипеда служат прямоугольники, то этот параллелепипед – прямоугольный.

Учитель показывает учащимся модели прямого и прямоугольного параллелепипедов.

7. Записать в тетрадях свойство диагоналей параллелепипеда: «Четыре диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам».

Доказательство этого утверждения основано на следующем факте: «если две прямые в пространстве параллельны третьей прямой, то они параллельны».

Доказательство свойства диагоналей параллелепипеда учащиеся проводят устно по готовым чертежам на доске с помощью учителя (рис. 346, а, б, в, заранее выполнить на доске).