logo
конспекты уроков по геометрии

IV. Итоги урока.

Домашнее задание: изучить материал пунктов 96 и 97; повторить материал п. 89; решить задачи №№ 1020 (а, в), 1023.

Урок 5 Теорема косинусов

Цели:доказать теорему косинусов и научить учащихся применять ее при решении задач.

Ход урока

I. Проверка домашнего задания.

1. Сформулировать и доказать теорему о площади треугольника (вычисление площади треугольника по двум сторонам и углу между ними).

2. Сформулировать и доказать теорему синусов.

3. Проверить решение задачи № 1023.

II. Изучение нового материала.

1. Записать формулу расстояния между двумя точками: точкиМ1(х1;у1),М2(х2;у2),

d=М1М2=.

2. Доказать теорему косинусов, используя рисунок 293 учебника.

3. Теорему косинусов называют иногда обобщенной теоремой Пифагора. Такое название объясняется тем, что в теореме косинусов содержится как частный случай теорема Пифагора.

В самом деле, если в треугольнике АВСуголАпрямой, то cosА= = cos 90° = 0 и по формулеа2=b2+с2– 2∙ cosАполучаема2=b2+с2, то есть квадрат гипотенузы равен сумме квадратов катетов.

4. Обсудить с учащимися, какие три элемента треугольника нужно знать, чтобы вычислить четвертый элемент (сторону или угол), используя: 1) теорему синусов; 2) теорему косинусов.