logo
конспекты уроков по геометрии

IV. Самостоятельная работа контролирующего характера.

Вариант I

Решить задачи № 912 (а, г); № 920 (г); № 988 (а, б); № 921 (а, в); № 914 (а).

Вариант II

Решить задачи №№ 912 (в, д); 920 (д); 988 (в, г); 921 (б, г); 914 (б).

V. Итоги урока.

Домашнее здание:подготовиться к устному опросу по карточкам, повторить материал пунктов 76–87; ответить на вопросы 1–20, с. 213–214 и на вопросы 1–8, с. 249 учебника; решить задачи №№ 798, 795; 990 (а) (для векторови).

Урок 3 Связь между координатами вектора и координатами его начала и конца. Простейшие задачи в координатах

Цели:рассмотреть связь между координатами вектора и координатами его начала и конца; разобрать задачи о нахождении координат середины отрезка, о вычислении длины вектора по его координатам и нахождении расстояния между двумя точками.

Ход урока

I. Анализ результатов контрольной работы.

1. Указать ошибки, сделанные учащимися при выполнении работы.

2. Решить на доске задачи, вызвавшие затруднения у учащихся.

II. Изучение нового материала (лекция).

1. Рассмотреть по учебнику рис. 277 и рис. 278 и ввести понятие радиус-вектора.

Без доказательства записать в тетрадях утверждения:

а) координаты точки М равны соответствующим координатам ее радиус-вектора;

б) каждая координата вектора равна разности соответствующих координат его конца и начала:

џУстно решить задачу № 934.

2. Введение системы координат дает возможность изучать геометрические фигуры и их свойства с помощью уравнений и неравенств и, таким образом, использовать в геометрии методы алгебры. Такой подход к изучению свойств геометрических фигур называетсяметодом координат.

3. Рассмотрим три вспомогательные задачи.