logo
конспекты уроков по геометрии

III. Изучение нового материала.

1. Ввести понятие отображения плоскости на себя и проиллюстрировать его примерами осевой и центральной симметрий.

Важно подчеркнуть, что при отображении плоскости на себя выполняются два условия:

1) каждой точке плоскости ставится в соответствие какая-то одна точка плоскости и 2) каждая точка плоскости оказывается поставленной в соответствие какой-то точке плоскости.

Нужно показать, что в случаях осевой и центральной симметрий выполняются оба условия.

В качестве контрпримера можно привести соответствие между точками плоскости, при котором каждой точке плоскости ставится в соответствие ее ортогональная проекция на данную прямую. В этом случае нарушено второе условие отображения плоскости на себя: не каждая точка плоскости оказывается сопоставленной какой-то точке, а именно любая точка, не лежащая на данной прямой, не будет сопоставлена никакой точке плоскости (плоскость отображается не на себя, а на данную прямую).

2. Решить задачи № 1148 (а) и №1149 (а).

3. Ввести понятие движения, опираясь на задачи 3 и 6, рассмотренные в начале урока.

В качестве примера отображения плоскости на себя, не являющегося движением, то есть не сохраняющего расстояния между точками, можно рассмотреть центральное подобие (гомотетию) с коэффициентом 2; учащиеся сами могут доказать, что при таком отображении расстояния между точками увеличиваются в два раза.

4. Решить задачу № 1153 для усвоения понятия, а затем по заранее подготовленному рисунку 2 решить следующую задачу: «При движении плоскости точкаАпереходит в точкуМ. В какую из обозначенных на рисунке 2 точек может отобразиться при этом движении точкаВ?».

Рис. 2

5. Доказать, что осевая и центральная симметрии являются движениями. После этого рассматривается теорема о том, что при движении отрезок отображается на отрезок, и следствие из нее. В ходе доказательства теоремы полезно акцентировать внимание учащихся на том, что доказательство состоит из двух частей: во-первых, доказывается, что каждая точкаРданного отрезкаМNотображается в некоторую точкуР1отрезкаМ1N1и, во-вторых, что в каждую точкуР1отрезкаМ1N1переходит какая-то точкаРданного отрезкаМN.