logo
конспекты уроков по геометрии

III. Итоги урока.

Домашнее задание: повторить материал пунктов 105–110; изучить материал пункта 111; решить задачи №№ 1114, 1115, 1117 (а).

Урок 7 Площадь кругового сектора

Цели:ввести понятие кругового сектора, вывести формулу для вычисления площади кругового сектора; научить применять знания при решении задач.

Ход урока

I. Проверка изученного материала.

1. Формула длины окружности. Выражение радиуса окружности через длину окружности.

2. Формулы площади круга, радиуса круга через площадь круга, формула площади круга, выраженная через диаметр круга.

3. Формула длины дуги окружности.

4. Устно решить задачу № 1115.

II. Объяснение нового материала.

1. Ввести понятие кругового сектора и понятие дуги сектора (рис. 315).

2. Вывести формулу для вычисления площадиSкругового сектора радиусаR, ограниченного дугой с градусной мерой.

Так как площадь всего круга равна πR2, то площадь кругового сектора, ограниченного дугой в 1°, равна.

Поэтому площадь Sвыражается формулой

S=∙

3. Ввести понятие кругового сегмента и познакомить учащихся с нахождением площади кругового сегмента, используя таблицу «Круговой сегмент».

III. закрепление изученного материала (решение задач).

1. Решить задачу.

АВСD– квадрат со стороной 1 дм. Найдите площадь «чечевицы», заштрихованной на рисунке.

Решение

Так как сторона квадрата равна 1 дм, то площадь квадрата АВСDравна 1 дм2.

Площадь сектора DАKСравна∙ = = ∙ 90° =(дм2).

Площадь треугольника АСDравнадм2.

Площадь сегмента АKСравна(дм2).

Площадь «чечевицы»: 2 ∙ ≈ 0,7 (дм2).

Ответ:≈ 0,7 дм2.

2. Решить задачу № 1126 (самостоятельно).

Решение

R= 10 см;SкругаR2= 100π (см2).

l== 60°;Sсектора=(см2).

S=SкругаSсектора= 100π –≈ 262 (cм2).

Ответ: ≈ 262 см2.

3. Решить задачу № 1127.

Решение

 = 72°, Sсектора=S. Найти:R.

S=; 5SR2;R2=;R=.

Ответ:.

4. Вывести формулу площади кольца, ограниченного двумя окружностями с общим центром и радиусамиR1иR2, гдеR1<R2.

Решение

;Sкольца=S2S1=.

5. Решить задачу № 1120.

Решение

R1= 1,5 cм,R2= 2,5 см.

Sкольца=π (2,52 – 1,52) = π (2,5 – 1,5) (2,5 + 1,5) = π ∙1 ∙ 4 = 4π (см2).

Ответ: 4π см2.

6. Решить задачу № 1122 на доске и в тетрадях.

Решение

R1= 3 м,R2= 3 + 1 = 4 (м);

Sдорожки=π = π (42 – 32) = π (4 – 3) (4 + 3) = 7π (м2).

На 1 м2дорожки требуется 0,8 дм3песка; тогда 0,8 ∙ 7π= 5,6π(дм3) ≈ ≈ 17,6 дм3.

Ответ: ≈ 17,6 дм3.