logo
конспекты уроков по геометрии

II. Работа с учебником.

1. Определение окружности, вписанной в многоугольник.

2. Разобрать по рисунку 308 учебника доказательство теоремы об окружности, вписанной в правильный многоугольник.

Дома учащиеся запишут доказательство этой теоремы.

3. Записать в тетради следствие 1 и следствие 2.

4. Записать в тетради правила нахождения для заданного правильного многоугольника центров описанной и вписанной окружностей, а также их радиусов:

1) Центром окружности, описанной около правильного многоугольника, является точка пересечения серединных перпендикуляров к сторонам многоугольника (достаточно найти точку пересечения серединных перпендикуляров к двум соседним сторонам), а радиусом является отрезок биссектрисы угла многоугольника, соединяющий его вершину с центром.

2) Для нахождения центра и радиуса окружности, вписанной в многоугольник, достаточно построить биссектрисы двух соседних углов, найти точку О их пересечения и опустить из нее перпендикуляр на соответствующую сторону многоугольника (точка О будет центром вписанной окружности, а перпендикуляр – ее радиусом).