logo search
конспекты уроков по геометрии

Ход уроков

I. Повторение ранее изученного материала.

1. Сформулировать определения медианы, биссектрисы и высоты треугольника.

2. Равнобедренный треугольник и его свойства. Признаки равенства треугольников.

3. Определение средней линии треугольника и ее свойство.

4. Теорема Пифагора и обратная ей теорема.

5. Формула для вычисления площади треугольника.

6. Понятие параллелограмма, свойства и признаки параллелограмма, ромба, прямоугольника.

7. Определение трапеции, виды трапеций.

8. Площадь параллелограмма, площадь трапеции.

II. Решение задач.

Повторение можно организовать в ходе решения следующих задач:

1. В треугольниках ABCиA1B1C1 даноAB=A1B1;AC =A1C1, точкиDиD1лежат соответственно на сторонахBCиB1C1;AD = =A1D1. Докажите, что данные треугольники равны, еслиADиA1D1: а) высоты; б) медианы.

Примечание.при решении задачи 1 (б) полезно обратить внимание учащихся на прием «удвоения медианы» – откладывание на продолжении медианыADза точкуDотрезка, равного медиане.

2. Докажите, что центр окружности, вписанной в равнобедренный треугольник, лежит на высоте, проведенной к основанию.

3. Докажите, что центр окружности, описанной около равнобедренного треугольника, лежит на медиане, проведенной к его основанию, или на ее продолжении.

4. Докажите, что треугольник является равнобедренным, если две его медианы равны.

5. Докажите, что если в треугольнике две высоты равны, то центр вписанной в него окружности лежит на одной из медиан этого треугольника, а центр описанной окружности – на той же медиане или ее продолжении.

6. Докажите, что середины сторон произвольного четырехугольника являются вершинами параллелограмма.

7. Докажите, что отрезки, соединяющие середины противоположных сторон равнобедренной трапеции, взаимно перпендикулярны.

8. Найдите длины отрезков, соединяющих середины сторон трапеции с равными диагоналями, если ее основания раны 7 см и 9 см, а высота равна 8 см.

9. Вычислите площадь треугольника АВС, еслиAB= 8,5 м,АС= 5 м, высотаАN= 4 м и точкаNлежит на отрезкеBC.

10. Вершины четырехугольника ABCDявляются серединами сторон четырехугольника, диагонали которого равны по 6 дм и пересекаются под углом 60°. Вычислите площадь четырехугольникаABCD.