Правило Лопіталя
При обчисленні границі функції підстановка граничного значення аргументу часто приводить до невизначеностей виду ,, від яких неможливо позбутися за допомогою раніше вивчених прийомів. Теорема, відома за назвоюправило Лопіталя, є одним із основних інструментів для розкриття таких невизначеностей.
Правило Лопіталя: Нехай у деякому околі точки функціїідиференційовні та. Якщоіодночасно є нескінченно малими або нескінченно великими функціями при , тоді
,
за умови, що границя відношення похідних існує.
Ця теорема справедлива також і для односторонніх границь, і у випадку, коли .
У деяких випадках розкриття невизначеностей виду можлива необхідність кількаразового застосування правила Лопіталя.
Невизначеності ,,,,, зводяться до невизначеностей виду шляхом алгебраїчних перетворень.
Приклад 17.
Обчислити за допомогою правила Лопіталя границі:
а) ; б); в).
Розв’язок.
а)
.
б)
.
в) .
Позначимо границю через і прологарифмуємо вираз:
;
або .
Тоді:
.
Оскільки , то границя, яку ми знаходили, дорівнює:
.
Yandex.RTB R-A-252273-3
- Вища математика математичний аналіз функцій однієї змінної
- 0501 „Економіка і підприємництво”,
- 0502 „Менеджмент”
- Видання розглянуто і рекомендовано до друку на засіданні кафедри фізико-математичних дисциплін (протокол № 5 від 13 січня 2009 р.);
- Скорочені теоретичні відомості
- 1. Границі і неперервність функції
- Границя числової послідовності і функції в точці і на нескінченності. Односторонні границі функції в точці.
- 1.2. Основні теореми про границі
- 1.3. Нескінченно малі і нескінченно великі функції
- 1.4. Приклади обчислення границь
- 1.5. Неперервність функції
- Питання для самоперевірки
- 2. Диференціальне числення функції однієї змінної
- 2.1. Похідна функції. Геометричний зміст похідної функції
- 2.2. Основні правила диференціювання функції. Таблиця похідних
- Таблиця похідних основних елементарних функцій
- Основні правила диференціювання
- Похідна складної функції
- Зведена таблиця формул диференціювання
- Похідна оберненої функції
- Диференціювання функцій, заданих параметрично
- Диференціювання неявної функції
- Логарифмічне диференціювання
- Похідні вищих порядків
- 2.3. Диференціал функції
- 2.4. Застосування диференціального числення функції однієї змінної
- 2.4.1. Застосування похідної при обчисленні границь.
- Правило Лопіталя
- 2.4.2. Зростання і спадання функції на інтервалі
- 2.4.3. Екстремуми функції
- 2.4.4. Найбільше і найменше значення функції на відрізку.
- Значень функції на відрізку:
- 2.4.5. Опуклість графіка функції. Точки перегину
- Проміжки опуклості, вгнутості й точки перегину:
- 2.4.6. Асимптоти графіка функції
- 2.4.7. Повне дослідження функції і побудова її графіка
- 2.5. Питання для самоперевірки
- 3. Інтегральне числення функції однієї змінної
- 3.1. Невизначений інтеграл
- 3.1.1 Властивості невизначеного інтеграла.
- 3.1.2. Таблиця невизначених інтегралів
- 3.1.3. Основні методи інтегрування
- Метод безпосереднього інтегрування
- Метод заміни змінної
- Метод інтегрування частинами
- 3.1.4. Інтегрування дрібно-раціональних функцій
- Інтегрування найпростіших дробів
- 3.1.5. Інтегрування тригонометричних функцій
- , , .
- 3.1.6. Інтегрування деяких видів ірраціональних функцій
- 3.1.7. Інтегрування диференціального бінома
- 3.1.8. Інтеграли, що не виражаються через елементарні функції
- 3.1.9. Питання для самоперевірки
- 3.2. Визначений інтеграл
- 3.2.1. Інтегральна сума і визначений інтеграл
- 3.2.2. Властивості визначеного інтегралу
- 3.2.3. Обчислення визначеного інтеграла
- Метод заміни змінної в визначеному інтегралі
- Метод інтегрування частинами у визначеному інтегралі
- 3.2.4. Невласні інтеграли
- 3.2.5. Геометричні застосування визначеного інтеграла
- Обчислення площ плоских фігур у декартових координатах
- Обчислення об'єму тіла обертання
- Обчислення довжини дуги кривої
- 3.2.6. Питання для самоперевірки
- Література
- Индивидуальні завдання до розрахунково-графічної роботи
- 4) ; 5).
- Таблиці вибору варіантів завдань для ргр № 2
- 211 Група
- 212 Група
- 213 Група
- 214 Група
- 215 Група
- 311 Група
- 312 Група
- 313 Група
- 314 Група
- 315 Група
- 316 Група
- 1111 Група
- 1112 Група
- 1211 Група
- 1212 Група
- 1311 Група
- 1312 Група
- 1313 Група
- 1511 Група
- 1512 Група