3.2.4. Невласні інтеграли
Визначений інтеграл , у якому проміжок інтегрування– скінченний, а підінтегральна функція– неперервна на відрізку , називаєтьсявласним інтегралом.
Невласним інтегралом називається визначений інтеграл від неперервної функції, але з нескінченним проміжком інтегрування або визначений інтеграл з скінченним проміжком інтегрування, але від функції, що має на ньому нескінченний розрив. Відповідно, розрізняють невласні інтеграли I роду (з нескінченними межами) і II роду (інтеграл від розривної функції).
Невласним інтегралом першого роду неперервної на інтерваліфункціїназивається скінченна границя.
Таким чином, за визначенням:
.
Якщо границя, яка знаходиться в правій частині рівності існує і скінченна, то невласний інтеграл збігається, у противному випадку – розбігається.
Аналогічно визначається невласний інтеграл на інтервалі :
.
Невласний інтеграл із двома нескінченними межами (на інтервалі ) розбивається на два за формулою:
, де – довільне число.
Такий інтеграл збігається лише тоді, коли збігаються обидва інтеграли на які він розбивається.
Приклад 41.
Обчислити невласні інтеграли І роду: а) ; б).
Розв’язок.
а) .
Оскільки границя – скінченна, то невласний інтеграл збігається.
б) .
Оскільки границя - нескінченна, то невласний інтеграл розбігається.
Невласним інтегралом другого роду неперервної на інтерваліфункції, що має нескінченний розрив при, називається скінченна границя. Таким чином, за визначенням:
.
Якщо границя, яка знаходиться в правій частині рівності існує і скінченна, то невласний інтеграл збігається, у противному випадку – розбігається.
Аналогічно, якщо функція , неперервна на інтервалі, має нескінченний розрив при, то невласний інтеграл другого роду визначається за формулою:
.
Якщо функція має нескінченний розрив у внутрішній точцівідрізка, то невласний інтеграл другого роду визначаєтьсяза формулою:
.
Такий інтеграл збігається лише тоді, коли збігаються обидва інтеграли на які він розбивається.
Приклад 42.
Обчислити невласний інтеграл ІІ роду .
Розв’язок.
Підінтегральна функція має нескінченний розрив на лівій межі проміжку інтегрування , оскільки дана функція не визначена приі. Тоді:
.
Оскільки границя – нескінченна, то невласний інтеграл розбігається.
Yandex.RTB R-A-252273-3- Вища математика математичний аналіз функцій однієї змінної
- 0501 „Економіка і підприємництво”,
- 0502 „Менеджмент”
- Видання розглянуто і рекомендовано до друку на засіданні кафедри фізико-математичних дисциплін (протокол № 5 від 13 січня 2009 р.);
- Скорочені теоретичні відомості
- 1. Границі і неперервність функції
- Границя числової послідовності і функції в точці і на нескінченності. Односторонні границі функції в точці.
- 1.2. Основні теореми про границі
- 1.3. Нескінченно малі і нескінченно великі функції
- 1.4. Приклади обчислення границь
- 1.5. Неперервність функції
- Питання для самоперевірки
- 2. Диференціальне числення функції однієї змінної
- 2.1. Похідна функції. Геометричний зміст похідної функції
- 2.2. Основні правила диференціювання функції. Таблиця похідних
- Таблиця похідних основних елементарних функцій
- Основні правила диференціювання
- Похідна складної функції
- Зведена таблиця формул диференціювання
- Похідна оберненої функції
- Диференціювання функцій, заданих параметрично
- Диференціювання неявної функції
- Логарифмічне диференціювання
- Похідні вищих порядків
- 2.3. Диференціал функції
- 2.4. Застосування диференціального числення функції однієї змінної
- 2.4.1. Застосування похідної при обчисленні границь.
- Правило Лопіталя
- 2.4.2. Зростання і спадання функції на інтервалі
- 2.4.3. Екстремуми функції
- 2.4.4. Найбільше і найменше значення функції на відрізку.
- Значень функції на відрізку:
- 2.4.5. Опуклість графіка функції. Точки перегину
- Проміжки опуклості, вгнутості й точки перегину:
- 2.4.6. Асимптоти графіка функції
- 2.4.7. Повне дослідження функції і побудова її графіка
- 2.5. Питання для самоперевірки
- 3. Інтегральне числення функції однієї змінної
- 3.1. Невизначений інтеграл
- 3.1.1 Властивості невизначеного інтеграла.
- 3.1.2. Таблиця невизначених інтегралів
- 3.1.3. Основні методи інтегрування
- Метод безпосереднього інтегрування
- Метод заміни змінної
- Метод інтегрування частинами
- 3.1.4. Інтегрування дрібно-раціональних функцій
- Інтегрування найпростіших дробів
- 3.1.5. Інтегрування тригонометричних функцій
- , , .
- 3.1.6. Інтегрування деяких видів ірраціональних функцій
- 3.1.7. Інтегрування диференціального бінома
- 3.1.8. Інтеграли, що не виражаються через елементарні функції
- 3.1.9. Питання для самоперевірки
- 3.2. Визначений інтеграл
- 3.2.1. Інтегральна сума і визначений інтеграл
- 3.2.2. Властивості визначеного інтегралу
- 3.2.3. Обчислення визначеного інтеграла
- Метод заміни змінної в визначеному інтегралі
- Метод інтегрування частинами у визначеному інтегралі
- 3.2.4. Невласні інтеграли
- 3.2.5. Геометричні застосування визначеного інтеграла
- Обчислення площ плоских фігур у декартових координатах
- Обчислення об'єму тіла обертання
- Обчислення довжини дуги кривої
- 3.2.6. Питання для самоперевірки
- Література
- Индивидуальні завдання до розрахунково-графічної роботи
- 4) ; 5).
- Таблиці вибору варіантів завдань для ргр № 2
- 211 Група
- 212 Група
- 213 Група
- 214 Група
- 215 Група
- 311 Група
- 312 Група
- 313 Група
- 314 Група
- 315 Група
- 316 Група
- 1111 Група
- 1112 Група
- 1211 Група
- 1212 Група
- 1311 Група
- 1312 Група
- 1313 Група
- 1511 Група
- 1512 Група