11.1. Определение и основные теоремы
Функция называется бесконечно малой функцией (БМФ) при , если .
Например, при является функцией бесконечно малой, а функция является бесконечно малой функцией при .
Теорема 11.1. Алгебраическая сумма бесконечно малых функций есть бесконечно малая функция.
Теорема 11.2. Произведение бесконечно малой функции на ограниченную функцию есть БМФ.
Следствие 1. Произведение конечного числа БМФ есть БМФ.
Следствие 2. Произведение БМФ на число есть БМФ.
Теорема 11.3. Частное от деления БМФ на функцию, имеющую предел, отличный от нуля – есть БМФ.
Теорема 11 4. Если – БМФ, то – ББФ. Обратно, если – ББФ, то – БМФ.
Теорема 11.5. функцию можно представить как сумму числа А и бесконечно малой функции .
Доказательство: Пусть . Следовательно, по определению, такое, что для всех х из -окрестности точки х0 выполняется неравенство , то есть , а это значит, что , то есть функция есть БМФ. Обозначив , получаем , что и требовалось доказать.
Обратно, пусть , где - БМФ. То есть такое, что для всех х из -окрестности точки х0 выполняется неравенство , то есть , а это означает по определению предела функции в точке, что .
Yandex.RTB R-A-252273-3- Тема III – основы математического анализа
- §8. Множества и операции над ними
- 8.1. Основные понятия
- 8.2. Числовые множества
- 9. Функция
- 9.1. Понятия функции и ее графика
- 9.2. Способы задания функций
- 9.3. Некоторые свойства функций
- 9.4. Обратная функция
- 9.5. Основные элементарные функции
- 9.5. Сложная функция и элементарные функции
- §10. Предел функции
- 10.1. Предел функции в точке
- 10.2. Односторонние пределы
- 10.3. Предел функции на бесконечности
- 10.4. Бесконечно большие функции
- §11. Бесконечно малые функции
- 11.1. Определение и основные теоремы
- 11.2. Основные теоремы о пределах
- 11.3. Техника вычисления пределов. Примеры
- 11.4. Первый замечательный предел
- 11.5. Эквивалентные функции
- 11.6. Второй замечательный предел
- 11.7. Техника вычисления пределов вида .
- §12. Непрерывность функции
- 12.1. Непрерывность функции в точке и в области
- 12.2. Основные теоремы о непрерывных функциях
- 12.3. Классификация точек разрыва
- §13. Производная функции
- 13.1. Приращение аргумента и приращение функции
- 13.2. Определение производной функции в точке
- 13.3. Геометрический смысл производной
- 13.4. Физический смысл производной
- 13.5. Дифференцируемость функций
- 13.6. Производная постоянной, суммы, произведения и частного двух функций
- 13.7. Производная сложной и обратной функции
- 13.8. Производные основных элементарных функций
- 13.9. Производная функции, заданной неявно
- 13.10. Логарифмическая производная
- 13.11. Производная функции, заданной параметрически
- 13.13. Примеры вычисления производных
- 13.14. Производные высших порядков
- §14. Дифференциал функции
- 14.1. Понятие дифференциала функции
- 14.2. Основные теоремы о дифференциалах
- 14.3. Применение дифференциала к приближенным вычислениям
- §15. Исследование функций при помощи производных
- 15.1. Правило Лопиталя
- 15.2. Некоторые теоремы о дифференцируемых функциях
- 15.3. Исследование поведения функций и построение графиков
- Общее исследование функции и построение ее графика рекомендуется выполнять по следующей схеме: