logo
matematika_predel_i_proizvodnaya

9.4. Обратная функция

Пусть задана функция с областью определения D и множеством значений E. Если каждому значению соответствует единственное значение , то определена функция с областью определения E и множеством значений D. Такая функция называется обратной к функции .

Из определения обратной функции вытекает, что функция имеет обратную тогда и только тогда, когда каждому соответствует единственное и наоборот, то есть когда функция задает взаимнооднозначное соответствие между множествами и . Тогда всякая строго монотонная функция имеет обратную, при этом если функция возрастает (убывает), то обратная функция также возрастает (убывает).

Графики взаимно обратных функций симметричны относительно биссектрисы первого и третьего координатных углов.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4