13.6. Производная постоянной, суммы, произведения и частного двух функций
Для нахождения производной функции по определению, необходимо дать аргументу приращение , вычислить приращение функции и найти предел отношения приращения функции к приращению аргумента, если приращение аргумента стремится к нулю. Воспользуемся данным алгоритмом для доказательства следующих теорем.
Теорема 13.2. Производная постоянной функции равна 0, т.е. .
Доказательство. Пусть . Тогда и, следовательно, .
.
Теорема 13.3. Производная алгебраической суммы двух функций равна сумме производных этих функций, т.е. .
Доказательство. Пусть . Тогда
.
Т огда .
Замечание. Теорема верна и для любого конечного числа функций.
Теорема 13.4. Производная произведения двух функций равна производной первой функции, умноженной на вторую функцию, плюс первая функция, умноженная на производную второй функции, т.е.
Следствие.
Теорема 13. 4. Производная частного двух функций равна произведению производной числителя умноженной на знаменатель минус производная знаменателя на числитель и делённое на квадрат знаменателя, т.е. .
Следствие. .
Yandex.RTB R-A-252273-3- Тема III – основы математического анализа
- §8. Множества и операции над ними
- 8.1. Основные понятия
- 8.2. Числовые множества
- 9. Функция
- 9.1. Понятия функции и ее графика
- 9.2. Способы задания функций
- 9.3. Некоторые свойства функций
- 9.4. Обратная функция
- 9.5. Основные элементарные функции
- 9.5. Сложная функция и элементарные функции
- §10. Предел функции
- 10.1. Предел функции в точке
- 10.2. Односторонние пределы
- 10.3. Предел функции на бесконечности
- 10.4. Бесконечно большие функции
- §11. Бесконечно малые функции
- 11.1. Определение и основные теоремы
- 11.2. Основные теоремы о пределах
- 11.3. Техника вычисления пределов. Примеры
- 11.4. Первый замечательный предел
- 11.5. Эквивалентные функции
- 11.6. Второй замечательный предел
- 11.7. Техника вычисления пределов вида .
- §12. Непрерывность функции
- 12.1. Непрерывность функции в точке и в области
- 12.2. Основные теоремы о непрерывных функциях
- 12.3. Классификация точек разрыва
- §13. Производная функции
- 13.1. Приращение аргумента и приращение функции
- 13.2. Определение производной функции в точке
- 13.3. Геометрический смысл производной
- 13.4. Физический смысл производной
- 13.5. Дифференцируемость функций
- 13.6. Производная постоянной, суммы, произведения и частного двух функций
- 13.7. Производная сложной и обратной функции
- 13.8. Производные основных элементарных функций
- 13.9. Производная функции, заданной неявно
- 13.10. Логарифмическая производная
- 13.11. Производная функции, заданной параметрически
- 13.13. Примеры вычисления производных
- 13.14. Производные высших порядков
- §14. Дифференциал функции
- 14.1. Понятие дифференциала функции
- 14.2. Основные теоремы о дифференциалах
- 14.3. Применение дифференциала к приближенным вычислениям
- §15. Исследование функций при помощи производных
- 15.1. Правило Лопиталя
- 15.2. Некоторые теоремы о дифференцируемых функциях
- 15.3. Исследование поведения функций и построение графиков
- Общее исследование функции и построение ее графика рекомендуется выполнять по следующей схеме: