9.2. Способы задания функций
Для изучения функции ее необходимо задать, т.е. указать правило, позволяющее по значению аргумента функции находить соответствующее ему значение функции. Это правило можно указать различными способами. К таким способам можно отнести аналитический, параметрический, графический, табличный, алгоритмический и описательный.
Мы будем, в основном, изучать числовые функции, т.е. функции, у которых область определения и множество значений являются числовыми множествами. Числовые функции чаще всего задаются аналитическим способом, т.е. при помощи формул. Например, , , . Если уравнение, с помощью которого задается функция не разрешено относительно y, то функция называется неявной. Так, известное со школы уравнение окружности с центром в точке не разрешено относительно и является уравнением неявной функции.
Иногда числовые функции на различных числовых промежутках задаются различными формулами. Такова, например, функция
Когда зависимость y от x не задана непосредственно, а вместо этого даны зависимости обоих переменных x и y от некоторого третьего вспомогательного переменного t в виде
, где ,
то это – параметрический способ задания функции; тогда вспомогательное переменное t называют параметром.
При графическом способе задания функции зависимость y от x задают при помощи линии на плоскости x0y.
Табличный способ задания функции, это способ, когда некоторые значения аргумента и соответствующие им значения функции в определенном порядке размещаются в таблице. Например, тригонометрические функции представлены таблицами Брадиса. В виде таблицы обычно представляют экспериментальные зависимости. Недостаток этого способа состоит в невозможности непосредственного определения значений функции, не входящих в таблицу.
Алгоритмический способ задания функции широко используют при вычислениях на ЭВМ.
Описательный (или словесный) способ задания функции – это способ, при котором правило соответствия значений функции значениям аргумента выражено словами. Например, функцию, которая каждому числу ставит в соответствие целую часть этого числа , можно задать следующим образом: «значением функции является наибольшее целое число, не превосходящее х».
Yandex.RTB R-A-252273-3
- Тема III – основы математического анализа
- §8. Множества и операции над ними
- 8.1. Основные понятия
- 8.2. Числовые множества
- 9. Функция
- 9.1. Понятия функции и ее графика
- 9.2. Способы задания функций
- 9.3. Некоторые свойства функций
- 9.4. Обратная функция
- 9.5. Основные элементарные функции
- 9.5. Сложная функция и элементарные функции
- §10. Предел функции
- 10.1. Предел функции в точке
- 10.2. Односторонние пределы
- 10.3. Предел функции на бесконечности
- 10.4. Бесконечно большие функции
- §11. Бесконечно малые функции
- 11.1. Определение и основные теоремы
- 11.2. Основные теоремы о пределах
- 11.3. Техника вычисления пределов. Примеры
- 11.4. Первый замечательный предел
- 11.5. Эквивалентные функции
- 11.6. Второй замечательный предел
- 11.7. Техника вычисления пределов вида .
- §12. Непрерывность функции
- 12.1. Непрерывность функции в точке и в области
- 12.2. Основные теоремы о непрерывных функциях
- 12.3. Классификация точек разрыва
- §13. Производная функции
- 13.1. Приращение аргумента и приращение функции
- 13.2. Определение производной функции в точке
- 13.3. Геометрический смысл производной
- 13.4. Физический смысл производной
- 13.5. Дифференцируемость функций
- 13.6. Производная постоянной, суммы, произведения и частного двух функций
- 13.7. Производная сложной и обратной функции
- 13.8. Производные основных элементарных функций
- 13.9. Производная функции, заданной неявно
- 13.10. Логарифмическая производная
- 13.11. Производная функции, заданной параметрически
- 13.13. Примеры вычисления производных
- 13.14. Производные высших порядков
- §14. Дифференциал функции
- 14.1. Понятие дифференциала функции
- 14.2. Основные теоремы о дифференциалах
- 14.3. Применение дифференциала к приближенным вычислениям
- §15. Исследование функций при помощи производных
- 15.1. Правило Лопиталя
- 15.2. Некоторые теоремы о дифференцируемых функциях
- 15.3. Исследование поведения функций и построение графиков
- Общее исследование функции и построение ее графика рекомендуется выполнять по следующей схеме: