logo search
Математический анализ_умм

4.8. Признак Коши (радикальный признак)

Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

,

то ряд сходится, если же для всех достаточно больших n выполняется неравенство

то ряд расходится.

Следствие. Если существует предел , то при <1 ряд сходится, а при >1 ряд расходится.

Пример. Определить сходимость ряда .

Вывод: ряд сходится.

Пример. Определить сходимость ряда .

Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.

,

таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.