logo
Математический анализ_умм

1.3. Предел

Определение. Число а называется пределом последовательности {xn}, если для любого положительного >0 существует такой номер N, что для всех n > N выполняется условие:

Это записывается: lim xn = a.

В этом случае говорят, что последовательность {xn}сходится к а при n.

Свойство: Если отбросить какое- либо число членов последовательности, то получаются новые последовательности, при этом если сходится одна из них, то сходится и другая.

Пример. Доказать, что предел последовательности lim .

Пусть при n > N верно , т.е. . Это верно при , таким образом, если за N взять целую часть от , то утверждение, приведенное выше, выполняется.

Пример. Показать, что при n последовательность 3, имеет пределом число 2.

Итого: {xn}= 2 + 1/n; 1/n = xn – 2

Очевидно, что существует такое число n, что , т.е. lim {xn} = 2.

Теорема. Последовательность не может иметь более одного предела.

Доказательство. Предположим, что последовательность {xn}имеет два предела a и b, не равные друг другу.

xn  a; xn  b; a  b.

Тогда по определению существует такое число  >0, что

Запишем выражение:

А т.к. - любое число, то , т.е. a = b. Теорема доказана.

Теорема. Если xn a, то .

Доказательство. Из xn a следует, что . В то же время:

, т.е. , т.е. . Теорема доказана.

Теорема. Если xn a, то последовательность {xn} ограничена.

Следует отметить, что обратное утверждение неверно, т.е. из ограниченности последовательности не следует ее сходимость.

Например, последовательность не имеет предела, хотя

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4