logo
Математический анализ_умм

3.11. Производные и дифференциалы функций нескольких переменных

Определение. Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение х к переменной х. Тогда величина xz = f( x + x, y) – f(x, y) называется частным приращением функции по х.

Можно записать

.

Тогда называется частной производной функции z = f(x, y) по х.

Обозначение:

Аналогично определяется частная производная функции по у.

Геометрическим смыслом частной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N0(x0, y0, z0) к сечению поверхности плоскостью у = у0.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4